

Bronze-Bit attack mitigation for old MIT Kerberos versions

Fixing CVE-2020-17049 for FreeIPA on CentOS 8 Stream and RHEL 8

Julien Rische jrische@redhat.com

2024-04-18 SambaXP

Red Hat France

FreeIPA and MIT krb5

- FreeIPA is an authentication and identity management system
 - Relying on multiple projects
 - 389DS, MIT krb5, SSSD, Samba, . . .
 - Use distribution's MIT krb5 package
- MIT KDC supports a range of plugin interfaces¹
 - Preauth, ccache, password policy, realm mapping, KDC policy, KDB, . . .
- FreeIPA has its own KDB plugin, using 389DS as a backend

The MS-SFU Kerberos extension

MS-SFU: Motivations

- Need to allow frontend services to impersonate users
 - Frontend: web service, . . .
 - Backend: SQL database, distributed storage system, . . .
- Historical solution: TGT forwarding (aka. unconstrained delegation)
 - Allow frontend service to access ANY service as the user
 - Bad solution from security perspective, more granularity required
- Microsoft implemented an extension called MS-SFU²
 - Introducing 2 new mechanisms
- Implemented in FreeIPA³ using MIT krb5's KDB plugin interface

- Allow a proxy service to impersonate a user against a specific target service^{4,5,6,7}
- Configure service delegation rules
 - ipa servicedelegation commands
 - Specific administration permissions required to configure such rules
- At the condition of providing an evicence ticket to the KDC
 - Ticket for user-to-proxy service
 - With forwarable ticket flag set

Disclaimer

In MS-SFU, the naming is used the opposite way. . .

Disclaimer

In MS-SFU, the naming is used the opposite way...

- The Target service is called Proxy (or Service 2)
- The Proxy service is called Service 1

- Mean to:
 - Integrate services relying different authentication methods for users requests into the Kerberos authentication system
 - OIDC, SASL, ...
 - Obtain encrypted user authorization information
 - Use Kerberos as group membership provider
- Allow any service with a valid TGT to request a ticket from any user to the service itself
- Resulting ticket has forwardable flag set only if:
 - FreeIPA: principal configured with ok-to-auth-as-delegate privilege
 - AD: account configured with TrustedToAuthForDelegation privilege
 - (Or if no constrained delegation rules are set for the proxy service⁸)

The Bronze-Bit exploit

The problem with MS-SFU

- A service with the forwardable S4U2Self ticket permission AND a constrained delegation rule can impersonate any user against the target service of this delegation rule
 - Including users with administration privileges for this service
- The forwardable flag is encrypted using the proxy service key
 - But nothing keeps the service from changing the value of this flag
- If the host running the proxy service is compromised, the attacker could use proxy service's credentials to access the target service as an admin user

Reproducer for MIT Kerberos and FreeIPA

- All available reproducers designed for Active Directory
- None of them could work against FreeIPA, because they were missing support for:
 - PA_S4U_X509_USER ASN.1 sequence⁹ (for S4U2Self)
 - AES HMAC-SHA2 encryption types family (from RFC8009¹⁰)
- We implemented support for these 2 features in the Impacket Python library
 - fortra/impacket#1684¹¹:
 Implement Kerberos encryption types from RFC8009 (AES HMAC-SHA2 family)
 - Will be needed when AD implements AES HMAC-SHA2 eventually¹²

Fix: Ticket signature

- Solution designed my Microsoft¹³
 - Signature actually means keyed checksum (RFC3961, RFC4120)
- Implemented by AD (KB4598347¹⁴) and MIT Kerberos 1.20¹⁵
- KDC signs the encrypted part of the ticket using the TGS key
 - KDC able to detect any modification of ticket's encrypted part
 - forwardable flag protected
- MS-PAC Kerberos extension
 - Add a Privilege Attribute Certificate (PAC) in the ticket

Fix for C8S and RHEL 8

C8S/RHEL8: Software constraints

- Using MIT Kerberos 1.18
- PAC generation handled by IPA KDB plugin
- ABI compatibility within major release¹⁶
 - Update to MIT krb5 1.20 impossible
- PAC ticket signature not backportable ¹⁷

```
krb5 error code
(*sign_authdata)(krb5_context kcontext,
                                                      unsigned int flags,
                                                      krb5_const_principal server_princ,
                 krb5_const_principal client_princ,
                 krb5 db entry *client.
                                                      krb5 db entry *server.
                 krb5 db entry *header server.
                                                      krb5 db entry *local tgt.
                                                      krb5 keyblock *server_key,
                 krb5_keyblock *client_key,
                 krb5_keyblock *header_key,
                                                      krb5_keyblock *local_tgt_key,
                 krb5_keyblock *session_key,
                                                      krb5_timestamp authtime,
                 krb5 authdata **tgt auth data.
                                                      void *ad info.
                 krb5 data ***auth indicators,
                                                      krb5 authdata ***signed auth data);
```

Attack detection

- If the ticket cannot be protected, maybe the KDC could detect the attack
- The PAC contains additional authorization information
 - List of SIDs
- Security identifier (SID)
 - Identifiers used in the AD world
 - Unique, except for some well-known ones¹⁸
- Well-known SIDs supported by FreeIPA:
 - S-1-18-1: Authentication authority asserted identity
 - Ticket obtained using normal user request
 - S-1-18-2: Service asserted identity¹⁹
 - Ticket obtained using S4U2Self

CVE-2022-37967

- PAC spoofing
 - Authorization information can be modified²⁰
- MS-PAC updated to add the extended KDC signature²¹
 - Implemented in MIT krb5 as "full PAC checksum"²²

Conclusion

Conclusion

- C8S/RHEL8
 - MIT krb5: extended KDC signature support backported²³
 - FreeIPA: Bronze-Bit attack detection mechanism released^{24,25,26}
- Limitation: not compatible with cross-realm constrained delegation
 - But RBCD (not supported on RHEL8) required by AD in this case²⁷
- Good example of the typical tribulations of long-term support
 - Especially for security-related network protocols
- MS-SFU is the continuation of Kerberos' gradual shift
 - From authentication only to authentication and authorization

References

1 MIT krb5 plugin modules https://web.mit.edu/kerberos/krb5-1.21/doc/plugindev/index.html 2. MS-SFU: Service for User and Constrained Delegation Protocol https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sfu/ 3. FreeIPA general constrained delegation https://freeina.readthedocs.jo/en/jna-4-10/designs/rhcd.html#general-constrained-delegation-design [Blog] Kerberos: How does delegation work? (Tarlogic) https://www.tarlogic.com/blog/kerberos-iii-how-does-delegation-work/ [Blog] Kerberos constrained delegation with protocol transition (Phackt) https://phackt.com/en-kerberos-constrained-delegation-with-protocol-transition 6. [Blog] Kerberos Delegation (Hackndo) https://en.hackndo.com/constrained-unconstrained-delegation/ 7. [Blog] Kerberos Constrained Delegation (ired.team) https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/abusing-kerberos-constrained-delegation MS-SELL3 2.5.1.2: KDC Renlies with Service Ticket https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sfu/ad98268b-f75b-42c3-b09b-959282770642 MS-SFU 2.2.2: PA S4U X509 USER https://learn.microsoft.com/en-us/openspecs/windows.protocols/ms-sfu/cd9d5ca7-ce20-4693-872h-2f5dd41chff6 10. RFC8009: AES Encryption with HMAC-SHA2 for Kerberos 5 https://datatracker.ietf.org/doc/html/rfc8009 11. impacket#1684: Implement Kerberos encryption types from RFC8009 (AES HMAC-SHA2 familly) https://github.com/fortra/impacket/pull/1684 12 [Blog] Improvements in Windows Kerheros Architecture (Steve Syfuhs) https://svfuhs.net/improvements-in-windows-kerberos-architecture 13. MS-PAC 2.8.3: ticket signature https://learn.microsoft.com/en-us/openspacs/windows.protocols/ms-pac/76c10ef5-de76-44hf-h208-0d8750fc2edd 14. Microsoft KB4598347 update https://support.microsoft.com/en-us/topic/kb4598347-managing-deployment-of-kerberos-s4u-changes-for-cye-2020-17049-569460b7-3267-e2b0-7d9b-e46d770332ab 15. MIT Kerberos upstream pull request for PAC ticket signature https://github.com/krb5/krb5/pull/1225 RHEL8 Compatibility Levels https://access.redhat.com/articles/rhel8-abi-compatibility 17. MIT Kerbreos 1.18.2 KDB plugin API https://github.com/krb5/krb5/blob/krb5-1.18.2-final/src/include/krb5/kdcpolicy_plugin.h#L120-L126 AD special identity groups https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-special-identities-groups Service Asserted Identity SID set by FreeIPA for S4112Self https://github.com/freeipa/freeipa/blob/release-4-9-12/daemons/ipa-kdb/ipa_kdb_mspac.c#L386-L390 20. Kerberos' RC4-HMAC broken in practice: spoofing PACs with MD5 collisions https://i.blackhat.com/EU-22/Thursday-Briefings/EU-22-Tervoort-Breaking-Kerberos-RC4-Cipher-and-Spoofing-Windows-PACs-wp.pdf 21. MS-PAC 2.8.4: extended KDC signature https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pac/9cf6f6ad-6b76-44b3-aefa-901aa1ff5a08 MIT Kerberos upstream pull request for PAC extended KDC signature (aka, PAC full checksum) https://github.com/krb5/krb5/pull/1284 23. Backport of PAC extended KDC signature support to CentOS 8 Stream https://gitlab.com/redhat/centos-stream/rpms/krb5/-/merge_requests/38 24. Bronze-Bit attack detection for FreeIPA https://github.com/freeipa/freeipa/commit/a847e2483b4c4832ee5129901da169f4eb0d1392 Build conditions for Bronze-Bit attack detection in FreeIPA https://github.com/freeipa/freeipa/commit/67ca47ba4092811029eec02f8af9c34ba7662924 26 Bronze-Rit attack detection natch for CentOS 8 Stream https://gitlab.com/redhat/centos-stream/rpms/ipa/-/merge_requests/58/ 27 FreeIPA constrained delegation use cases

https://freeipa.readthedocs.io/en/ipa-4-10/designs/rbcd.html#use-cases

Questions?

Thank you!