Bronze-Bit attack mitigation for old MIT Kerberos versions

Fixing CVE-2020-17049 for FreeIPA on CentOS 8 Stream and RHEL 8

Julien Rische
jrische@redhat.com
2024-04-18 SambaXP

Red Hat France
FreeIPA and MIT krb5

- FreeIPA is an authentication and identity management system
 - Relying on multiple projects
 - 389DS, MIT krb5, SSSD, Samba, ...
 - Use distribution’s MIT krb5 package
- MIT KDC supports a range of plugin interfaces
 - Preauth, ccache, password policy, realm mapping, KDC policy, KDB, ...
- FreeIPA has its own KDB plugin, using 389DS as a backend
The MS-SFU Kerberos extension
MS-SFU: Motivations

- Need to allow frontend **services to impersonate users**
 - Frontend: web service, . . .
 - Backend: SQL database, distributed storage system, . . .
- Historical solution: **TGT forwarding** (aka. *unconstrained delegation*)
 - Allow frontend service to access ANY service as the user
 - Bad solution from security perspective, more **granularity** required
- Microsoft implemented an extension called **MS-SFU**
 - Introducing 2 new mechanisms
- Implemented in FreeIPA using MIT krb5’s KDB plugin interface
Constrained Delegation (S4U2Proxy)

- Allow a proxy service to impersonate a user against a specific target service
- Configure service delegation rules
 - ipa servicedelegation commands
 - Specific administration permissions required to configure such rules
- At the condition of providing an evicence ticket to the KDC
 - Ticket for user-to-proxy service
 - With forwarable ticket flag set
Constrained Delegation (S4U2Proxy)
Disclaimer

In **MS-SFU**, the naming is used the opposite way...
Disclaimer

In MS-SFU, the naming is used the opposite way...

- The Target service is called Proxy (or Service 2)
- The Proxy service is called Service 1
Protocol Transition (S4U2Self)

- Mean to:
 - Integrate services relying different authentication methods for users requests into the Kerberos authentication system
 - OIDC, SASL, ...
 - Obtain encrypted user authorization information
 - Use Kerberos as group membership provider
- Allow any service with a valid TGT to request a ticket from any user to the service itself
- Resulting ticket has forwardable flag set only if:
 - FreeIPA: principal configured with ok-to-auth-as-delegate privilege
 - AD: account configured with TrustedToAuthForDelegation privilege
 - (Or if no constrained delegation rules are set for the proxy service)
Protocol Transition (S4U2Self)
Protocol Transition (S4U2Self)
Protocol Transition (S4U2Self)

- Proxy Service
- FreelPA KDC

S4U2Self U

Set forwardable if Proxy has ok-to-auth-as-delegate: false
Protocol Transition (S4U2Self)

- Proxy Service
- FreelPA KDC
- S4U2Self U
- Forwardable
 - If Proxy has
 - Ok-to-auth-as-delegate
- Sname: Proxy
 - Cname: User
 - Forwardable 1
 - ...
- U → P
- P → F

Proxy
ok-to-auth-as-delegate: true
The Bronze-Bit exploit
The problem with MS-SFU

- A service with the **forwardable** S4U2Self ticket permission AND a constrained delegation rule can impersonate **any user** against the **target service** of this delegation rule
 - Including users with *administration privileges* for this service
- The **forwardable** flag is encrypted using the **proxy service** key
 - But nothing keeps the service from changing the value of this flag
- If the host running the **proxy service** is compromised, the attacker could use proxy service’s credentials to **access the target service as an admin user**
CVE-2020-17049: The Bronze-Bit exploit

Diagram showing the interaction between Proxy Service, Target Service, and FreeIPA KDC, with specific steps and conditions for S4U2Self U and U → P.
CVE-2020-17049: The Bronze-Bit exploit
All available reproducers designed for Active Directory
None of them could work against FreeIPA, because they were missing support for:

- PA_S4U_X509_USER ASN.1 sequence (for S4U2Self)
- AES HMAC-SHA2 encryption types family (from RFC8009)

We implemented support for these 2 features in the Impacket Python library

- fortra/impacket#1684:
 Implement Kerberos encryption types from RFC8009 (AES HMAC-SHA2 family)
- Will be needed when AD implements AES HMAC-SHA2 eventually
Solution designed by Microsoft13

- **Signature** actually means **keyed checksum** (RFC3961, RFC4120)

- Implemented by AD (KB459834714) and MIT Kerberos 1.2015

- KDC signs the encrypted part of the ticket using the **TGS key**
 - KDC able to detect any modification of ticket’s encrypted part
 - **forwardable** flag protected

- **MS-PAC Kerberos extension**
 - Add a **Privilege Attribute Certificate** (PAC) in the ticket
PAC ticket signature
Fix for C8S and RHEL 8
C8S/RHEL8: Software constraints

- Using MIT Kerberos 1.18
- PAC generation handled by IPA KDB plugin
- ABI compatibility within major release\(^16\)
 - Update to MIT krb5 1.20 impossible
- PAC ticket signature not backportable\(^17\)

```c
krb5_error_code
(*sign_authdata)(krb5_context kcontext,
  krb5_const_principal client_princ,
  krb5_db_entry *client,
  krb5_db_entry *header_server,
  krb5_keyblock *client_key,
  krb5_keyblock *header_key,
  krb5_keyblock *session_key,
  krb5_authdata **tgt_auth_data,
  krb5_data ***auth_indicators,
  unsigned int flags,
  krb5_const_principal server_princ,
  krb5_db_entry *server,
  krb5_db_entry *local_tgt,
  krb5_keyblock *server_key,
  krb5_keyblock *local_tgt_key,
  krb5_timestamp authtime,
  void *ad_info,
  krb5_authdata ***signed_auth_data);
```
- If the ticket cannot be protected, maybe the KDC could detect the attack
- The PAC contains **additional authorization information**
 - List of SIDs
- **Security identifier (SID)**
 - Identifiers used in the AD world
 - Unique, except for some well-known ones
- Well-known SIDs supported by FreeIPA:
 - **S-1-18-1**: *Authentication authority asserted identity*
 - Ticket obtained using normal user request
 - **S-1-18-2**: *Service asserted identity*
 - Ticket obtained using S4U2Self
Bronze-Bit attack detection
CVE-2022-37967

- PAC spoofing
 - Authorization information can be modified
 - MS-PAC updated to add the extended KDC signature
 - Implemented in MIT krb5 as “full PAC checksum”
Bronze-Bit attack detection with PAC extended KDC signature
Conclusion
Conclusion

- C8S/RHEL8
 - MIT krb5: **extended KDC signature** support backported23
 - FreeIPA: **Bronze-Bit attack detection mechanism** released24,25,26
- Limitation: not compatible with cross-realm constrained delegation
 - But RBCD (not supported on RHEL8) required by AD in this case27
- Good example of the typical tribulations of **long-term support**
 - Especially for security-related network protocols
- MS-SFU is the continuation of Kerberos’ gradual shift
 - From authentication only to **authentication and authorization**
1. MIT krb5 plugin modules
https://web.mit.edu/kerberos/krb5-1.21/doc/plugindev/index.html
2. MS-SFU: Service for User and Constrained Delegation Protocol
3. FreeIPA general constrained delegation
https://freeipa.readthedocs.io/en/ipa-4-10/designs/rbcd.html#general-constrained-delegation-design
4. [Blog] Kerberos: How does delegation work? (Tarlogic)
https://www.tarlogic.com/blog/kerberos-iii-how-does-delegation-work/
5. [Blog] Kerberos constrained delegation with protocol transition (Phackt)
https://en.hackndo.com/constrained-unconstrained-delegation/
https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/abusing-kerberos-constrained-delegation
8. MS-SFU 3.2.5.1.2: KDC Replies with Service Ticket
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sfu/ad98268b-f75b-42c3-b09b-959282770642
9. MS-SFU 2.2.2: PA_S4U_X509_USER
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-sfu/cdb55ac7-e2a0-4693-872b-2f5b41418bf6
10. RFC8009: AES Encryption with HMAC-SHA2 for Kerberos 5
11. impacket#1684: Implement Kerberos encryption types from RFC8009 (AES HMAC-SHA2 family)
https://github.com/fortra/impacket/pull/1684
12. [Blog] Improvements in Windows Kerberos Architecture (Steve Syfuhs)
https://syfuhs.net/improvements-in-windows-kerberos-architecture
13. MS-PAC 2.8.3: ticket signature
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pac/76c10ef5-de76-44bf-b208-0d8750fc2edd
14. Microsoft KB4598347 update
https://support.microsoft.com/en-us/topic/kerberos-ticket-signature-changes-for-cve-2020-17049-569d60b7-3267-7d9b-e46d770332ab
15. MIT Kerberos upstream pull request for PAC ticket signature
https://github.com/krb5/krb5/pull/1225
16. RHEL8 Compatibility Levels
https://access.redhat.com/articles/rhel8-abi-compatibility
17. MIT Kerberos 1.18.2 KDB plugin API
https://github.com/krb5/krb5/blob/krb5-1.18.2-final/src/include/krb5/kdcpolicy_plugin.h#L120-L126
18. AD special identity groups
19. Service Asserted Identity SID set by FreeIPA for S4U2Self
https://github.com/freeipa/freeipa/blob/master/headers/krb5libs/include/krb5policy_plugin.h#L1120-L126
20. Kerberos’ RC4-HMAC broken in practice: spoofing PACs with MD5 collisions
21. MS-PAC 2.8.4: extended KDC signature
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-pac/9cf6f6ad-6b76-44bf-0d8750fc2edd
22. MIT Kerberos upstream pull request for PAC extended KDC signature (aka. PAC full checksum)
https://github.com/krb5/krb5/pull/1284
23. Backport of PAC extended KDC signature support to CentOS 8 Stream
https://github.com/redhat/centos-stream/patches/krb5/-/merge_requests/38
24. Bronze-Bit attack detection for FreeIPA
https://github.com/freeipa/freeipa/commit/a847a2483b4c433e6129901da1694aeb0d1392
25. Build conditions for Bronze-Bit attack detection in FreeIPA
https://github.com/freeipa/freeipa/commit/5ca47b640925611029e0c2b8a93c3ab76f2924
26. Bronze-Bit attack detection patch for CentOS 8 Stream
https://github.com/redhat/centos-stream/patches/krb5/-/merge_requests/58/
27. FreeIPA constrained delegation use cases
https://freeipa.readthedocs.io/en/ipa-4-10/designs/rbcd.html#use-cases
Questions?
Thank you!