
io uring
Status Update within Samba

Stefan Metzmacher <metze@samba.org>

Samba Team / SerNet

2023-05-10

https://samba.org/~metze/presentations/2023/SambaXP/

https://samba.org/~metze/presentations/2023/SambaXP/


Topics

I What is io-uring?

I io-uring for Samba

I Performance research, prototyping and ideas

I The road to upstream

I Future Improvements

I Questions? Feedback!

Stefan Metzmacher io uring (2/21)



Last Status Updates (SDC 2020 / SDC 2021)

I I gave a similar talk at the storage developer conference 2020:

I See https://samba.org/˜metze/presentations/2020/SDC/

I It explains the milestones and design up to Samba 4.13 (in detail)

I I gave a similar talk at the storage developer conference 2021:

I See https://samba.org/˜metze/presentations/2021/SDC/

I It explains the milestones and updates up to Samba 4.15 (in detail)

Stefan Metzmacher io uring (3/21)

https://samba.org/~metze/presentations/2020/SDC/
https://samba.org/~metze/presentations/2021/SDC/


Last Status Updates (SDC 2020 / SDC 2021)

I I gave a similar talk at the storage developer conference 2020:

I See https://samba.org/˜metze/presentations/2020/SDC/

I It explains the milestones and design up to Samba 4.13 (in detail)

I I gave a similar talk at the storage developer conference 2021:

I See https://samba.org/˜metze/presentations/2021/SDC/

I It explains the milestones and updates up to Samba 4.15 (in detail)

Stefan Metzmacher io uring (3/21)

https://samba.org/~metze/presentations/2020/SDC/
https://samba.org/~metze/presentations/2021/SDC/


What is io-uring? (Part 1)

I Linux 5.1 introduced a new scalable AIO infrastructure

I It’s designed to avoid syscalls as much as possible

I kernel and userspace share mmap’ed rings:

I submission queue (SQ) ring bu↵er
I completion queue (CQ) ring bu↵er

I See ”Ringing in a new asynchronous I/O API” on LWN.NET

I This can be nicely integrated with our async tevent model

I It may delegate work to kernel threads

I It seems to perform better compared to our userspace threadpool

I It can also inline non-blocking operations

Stefan Metzmacher io uring (4/21)

https://lwn.net/Articles/776703/


What is io-uring? (Part 1)

I Linux 5.1 introduced a new scalable AIO infrastructure

I It’s designed to avoid syscalls as much as possible

I kernel and userspace share mmap’ed rings:

I submission queue (SQ) ring bu↵er
I completion queue (CQ) ring bu↵er

I See ”Ringing in a new asynchronous I/O API” on LWN.NET

I This can be nicely integrated with our async tevent model

I It may delegate work to kernel threads

I It seems to perform better compared to our userspace threadpool

I It can also inline non-blocking operations

Stefan Metzmacher io uring (4/21)

https://lwn.net/Articles/776703/


io-uring for Samba (Part 1)

I Between userspace and filesystem (available from 5.1):

I IORING OP READV, IORING OP WRITEV and IORING OP FSYNC

I Supports bu↵ered and direct io

I IORING OP FSETXATTR, IORING OP FGETXATTR (from 5.19)

I IORING OP GETDENTS, under discussion, but seems to be tricky

I IORING OP FADVISE (from 5.6)

I Path based syscalls with async impersonation (from 5.6)

I IORING OP OPENAT2, IORING OP STATX

I Using IORING REGISTER PERSONALITY for impersonation

I IORING OP UNLINKAT, IORING OP RENAMEAT (from 5.10)

I IORING OP MKDIRAT, IORING OP SYMLINKAT,

IORING OP LINKAT (from 5.15)

I IORING OP SETXATTR, IORING OP GETXATTR (from 5.19)

Stefan Metzmacher io uring (5/21)



io-uring for Samba (Part 1)

I Between userspace and filesystem (available from 5.1):

I IORING OP READV, IORING OP WRITEV and IORING OP FSYNC

I Supports bu↵ered and direct io

I IORING OP FSETXATTR, IORING OP FGETXATTR (from 5.19)

I IORING OP GETDENTS, under discussion, but seems to be tricky

I IORING OP FADVISE (from 5.6)

I Path based syscalls with async impersonation (from 5.6)

I IORING OP OPENAT2, IORING OP STATX

I Using IORING REGISTER PERSONALITY for impersonation

I IORING OP UNLINKAT, IORING OP RENAMEAT (from 5.10)

I IORING OP MKDIRAT, IORING OP SYMLINKAT,

IORING OP LINKAT (from 5.15)

I IORING OP SETXATTR, IORING OP GETXATTR (from 5.19)

Stefan Metzmacher io uring (5/21)



io-uring for Samba (Part 2)

I Between userspace and socket (and also filesystem) (from 5.8)

I IORING OP SENDMSG, IORING OP RECVMSG

I Improved MSG WAITALL support (5.12, backported to 5.11, 5.10)

I Maybe using IOSQE ASYNC in order to avoid inline memcpy

I IORING OP SPLICE, IORING OP TEE

I IORING OP SENDMSG ZC, zero copy with an extra completion (from

6.1)

I IORING OP GET BUF, under discussion to replace

IORING OP SPLICE

Stefan Metzmacher io uring (6/21)



vfs io uring in Samba 4.12 (2020)

I With Samba 4.12 we added ”io uring” vfs module

I For now it only implements

SMB VFS PREAD,PWRITE,FSYNC SEND/RECV

I It has less overhead than our pthreadpool default implementations

I I was able to speed up a smbclient ’get largefile /dev/null’

I Using against smbd on loopback
I The speed changes from 2.2GBytes/s to 2.7GBytes/s

I The improvement only happens by avoiding context switches

I But the data copying still happens:

I From/to a userspace bu↵er to/from the filesystem/page cache

I The data path between userspace and socket is completely unchanged

I For both cases the cpu is mostly busy with memcpy

Stefan Metzmacher io uring (7/21)



vfs io uring in Samba 4.12 (2020)

I With Samba 4.12 we added ”io uring” vfs module

I For now it only implements

SMB VFS PREAD,PWRITE,FSYNC SEND/RECV

I It has less overhead than our pthreadpool default implementations

I I was able to speed up a smbclient ’get largefile /dev/null’

I Using against smbd on loopback
I The speed changes from 2.2GBytes/s to 2.7GBytes/s

I The improvement only happens by avoiding context switches

I But the data copying still happens:

I From/to a userspace bu↵er to/from the filesystem/page cache

I The data path between userspace and socket is completely unchanged

I For both cases the cpu is mostly busy with memcpy

Stefan Metzmacher io uring (7/21)



Performance research (SMB2 Read)

I In October 2020 I was able to do some performance research

I With 100GBit/s interfaces and two NUMA nodes per server.

I At that time I focussed on the SMB2 Read performance only

I We had limited time on the given hardware

I We mainly tested with fio.exe on a Windows client

I Linux kernel 5.8.12 on the server

I More verbose details can be found here:

I https://lists.samba.org/archive/samba-technical/2020-October/135856.html

Stefan Metzmacher io uring (8/21)

https://lists.samba.org/archive/samba-technical/2020-October/135856.html


Performance research (SMB2 Read)

I In October 2020 I was able to do some performance research

I With 100GBit/s interfaces and two NUMA nodes per server.

I At that time I focussed on the SMB2 Read performance only

I We had limited time on the given hardware

I We mainly tested with fio.exe on a Windows client

I Linux kernel 5.8.12 on the server

I More verbose details can be found here:

I https://lists.samba.org/archive/samba-technical/2020-October/135856.html

Stefan Metzmacher io uring (8/21)

https://lists.samba.org/archive/samba-technical/2020-October/135856.html


Performance research (SMB2 Read)

I In October 2020 I was able to do some performance research

I With 100GBit/s interfaces and two NUMA nodes per server.

I At that time I focussed on the SMB2 Read performance only

I We had limited time on the given hardware

I We mainly tested with fio.exe on a Windows client

I Linux kernel 5.8.12 on the server

I More verbose details can be found here:

I https://lists.samba.org/archive/samba-technical/2020-October/135856.html

Stefan Metzmacher io uring (8/21)

https://lists.samba.org/archive/samba-technical/2020-October/135856.html


Performance with MultiChannel, sendmsg()

4 connections, ˜3.8 GBytes/s, bound by >500% cpu in total, sendmsg() takes up to 0.5 msecs

Stefan Metzmacher io uring (9/21)



IORING OP SENDMSG (Part1)

4 connections, ˜6.8 GBytes/s, smbd only uses ˜11% cpu, (io wqe work ˜50% cpu) per connection, we still use >300% cpu in total

Stefan Metzmacher io uring (10/21)



IORING OP SENDMSG (Part2)

The major problem still exists, memory copy done by copy user enhanced fast string()

Stefan Metzmacher io uring (11/21)



IORING OP SENDMSG + IORING OP SPLICE (Part1)

16 connections, ˜8.9 GBytes/s, smbd ˜5% cpu, (io wqe work 3%-12% cpu filesystem->pipe->socket), only ˜100% cpu in total.

The Windows client was still the bottleneck with ”Set-SmbClientConfiguration -ConnectionCountPerRssNetworkInterface 16”

Stefan Metzmacher io uring (12/21)



smbclient IORING OP SENDMSG/SPLICE (network)

4 connections, ˜11 GBytes/s, smbd 8.6% cpu, with 4 io wqe work threads (pipe to socket) at ˜20% cpu each.

smbclient is the bottleneck here too

Stefan Metzmacher io uring (13/21)



smbclient IORING OP SENDMSG/SPLICE (loopback)

8 connections, ˜22 GBytes/s, smbd 22% cpu, with 4 io wqe work threads (pipe to socket) at ˜22% cpu each.

smbclient is the bottleneck here too, it triggers the memory copy done by copy user enhanced fast string()

Stefan Metzmacher io uring (14/21)



More loopback testing on brand new hardware

I Recently I re-did the loopback read tests

IORING OP SENDMSG/SPLICE (from /dev/shm/)

I 1 connection, ˜10-13 GBytes/s, smbd 7% cpu,

with 4 iou-wrk threads at 7%-50% cpu.

I 4 connections, 24-30 GBytes/s, smbd 18% cpu,

with 16 iou-wrk threads at 3%-35% cpu.

I I also implemented SMB2 writes with

IORING OP RECVMSG/SPLICE (tested to /dev/null)

I 1 connection, ˜7-8 GBytes/s, smbd 5% cpu,

with 3 io-wrk threads at 1%-20% cpu.

I 4 connections, ˜10 GBytes/s, smbd 15% cpu,

with 12 io-wrk threads at 1%-20% cpu.

I I tested with a Linux Kernel 5.13

I In both cases the bottleneck is clearly on the smbclient side

I We could apply similar changes to smbclient and add true multichannel

support

I It seems that the filesystem->pipe->socket path is much better

optimized

Stefan Metzmacher io uring (15/21)



More loopback testing on brand new hardware

I Recently I re-did the loopback read tests

IORING OP SENDMSG/SPLICE (from /dev/shm/)

I 1 connection, ˜10-13 GBytes/s, smbd 7% cpu,

with 4 iou-wrk threads at 7%-50% cpu.

I 4 connections, 24-30 GBytes/s, smbd 18% cpu,

with 16 iou-wrk threads at 3%-35% cpu.

I I also implemented SMB2 writes with

IORING OP RECVMSG/SPLICE (tested to /dev/null)

I 1 connection, ˜7-8 GBytes/s, smbd 5% cpu,

with 3 io-wrk threads at 1%-20% cpu.

I 4 connections, ˜10 GBytes/s, smbd 15% cpu,

with 12 io-wrk threads at 1%-20% cpu.

I I tested with a Linux Kernel 5.13

I In both cases the bottleneck is clearly on the smbclient side

I We could apply similar changes to smbclient and add true multichannel

support

I It seems that the filesystem->pipe->socket path is much better

optimized

Stefan Metzmacher io uring (15/21)



More loopback testing on brand new hardware

I Recently I re-did the loopback read tests

IORING OP SENDMSG/SPLICE (from /dev/shm/)

I 1 connection, ˜10-13 GBytes/s, smbd 7% cpu,

with 4 iou-wrk threads at 7%-50% cpu.

I 4 connections, 24-30 GBytes/s, smbd 18% cpu,

with 16 iou-wrk threads at 3%-35% cpu.

I I also implemented SMB2 writes with

IORING OP RECVMSG/SPLICE (tested to /dev/null)

I 1 connection, ˜7-8 GBytes/s, smbd 5% cpu,

with 3 io-wrk threads at 1%-20% cpu.

I 4 connections, ˜10 GBytes/s, smbd 15% cpu,

with 12 io-wrk threads at 1%-20% cpu.

I I tested with a Linux Kernel 5.13

I In both cases the bottleneck is clearly on the smbclient side

I We could apply similar changes to smbclient and add true multichannel

support

I It seems that the filesystem->pipe->socket path is much better

optimized

Stefan Metzmacher io uring (15/21)



The road to upstream (TEVENT FD ERROR)

I We need support for TEVENT FD ERROR in order to monitor errors

I When using IORING OP SEND,RECVMSG we still want to notice

errors

I This is the main merge request:

I https://gitlab.com/samba-team/samba/-/merge requests/2793

I This merge request converts Samba to use TEVENT FD ERROR:

I https://gitlab.com/samba-team/samba/-/merge requests/2885

I (It also simplifies other places in the code without io uring)

Stefan Metzmacher io uring (16/21)

https://gitlab.com/samba-team/samba/-/merge_requests/2793
https://gitlab.com/samba-team/samba/-/merge_requests/2885


The road to upstream (samba io uring abstraction 1)

API glue to tevent:

void samba_io_uring_ev_register(void);

const struct samba_io_uring_features *samba_io_uring_system_features(void);

struct samba_io_uring *samba_io_uring_ev_context_get_ring(struct tevent_context *ev);

const struct samba_io_uring_features *samba_io_uring_get_features(
const struct samba_io_uring *ring);

ev = tevent_context_init_byname(mem_ctx , "samba_io_uring_ev ");

I samba io uring abstraction factored out of vfs io uring:

I samba io uring ev hybrid tevent backend (glued on epoll backend)

I It means every layer getting the tevent context can use io uring

I No #ifdef’s just checking if the required features are available

Stefan Metzmacher io uring (17/21)



The road to upstream (samba io uring abstraction 1)

API glue to tevent:

void samba_io_uring_ev_register(void);

const struct samba_io_uring_features *samba_io_uring_system_features(void);

struct samba_io_uring *samba_io_uring_ev_context_get_ring(struct tevent_context *ev);

const struct samba_io_uring_features *samba_io_uring_get_features(
const struct samba_io_uring *ring);

ev = tevent_context_init_byname(mem_ctx , "samba_io_uring_ev ");

I samba io uring abstraction factored out of vfs io uring:

I samba io uring ev hybrid tevent backend (glued on epoll backend)

I It means every layer getting the tevent context can use io uring

I No #ifdef’s just checking if the required features are available

Stefan Metzmacher io uring (17/21)



The road to upstream (samba io uring abstraction 2)

generic submission/completion api:

void samba_io_uring_completion_prepare(struct samba_io_uring_completion *completion ,
void (* completion_fn)(struct samba_io_uring_completion *completion ,

void *completion_private ,
const struct io_uring_cqe *cqe),

void *completion_private);

void samba_io_uring_submission_prepare(struct samba_io_uring_submission *submission ,
void (* submission_fn)(struct samba_io_uring *ring ,

struct samba_io_uring_submission *submission ,
void *submission_private),

void *submission_private ,
struct samba_io_uring_completion *completion);

struct io_uring_sqe *samba_io_uring_submission_sqe(struct samba_io_uring_submission *
submission);

size_t samba_io_uring_queue_submissions(struct samba_io_uring *ring ,
struct samba_io_uring_submission *submission);

I Using it ...

I convert vfs io uring

I use it in smb2 server.c

I In future use it in other performance critical places too.

Stefan Metzmacher io uring (18/21)



The road to upstream (samba io uring abstraction 2)

generic submission/completion api:

void samba_io_uring_completion_prepare(struct samba_io_uring_completion *completion ,
void (* completion_fn)(struct samba_io_uring_completion *completion ,

void *completion_private ,
const struct io_uring_cqe *cqe),

void *completion_private);

void samba_io_uring_submission_prepare(struct samba_io_uring_submission *submission ,
void (* submission_fn)(struct samba_io_uring *ring ,

struct samba_io_uring_submission *submission ,
void *submission_private),

void *submission_private ,
struct samba_io_uring_completion *completion);

struct io_uring_sqe *samba_io_uring_submission_sqe(struct samba_io_uring_submission *
submission);

size_t samba_io_uring_queue_submissions(struct samba_io_uring *ring ,
struct samba_io_uring_submission *submission);

I Using it ...

I convert vfs io uring

I use it in smb2 server.c

I In future use it in other performance critical places too.

Stefan Metzmacher io uring (18/21)



The road to upstream (smb2 server.c)

I Refactoring of smb2 server.c

I add optional IORING OP SENDMSG, IORING OP RECVMSG support

I There are structural problems with splice from a file

I I had a discussion with the Linux developers about it:

I The page content from the page cache may change unexpectetly

I https://lists.samba.org/archive/samba-technical/2023-February/thread.html#137945

I We may not able to use IORING OP SENDMSG/SPLICE by default

I Maybe IORING OP RECVMSG/SPLICE is possible

I At least we can have only 1 one copy instead of two:

I IORING OP SENDMSG ZC is able to avoid copying to the socket

I we get an extra completion once the bu↵ers are not needed anymore

I This gives good results, between with and without

IORING OP SENDMSG/SPLICE

I But I don’t have numbers as it doesn’t work on loopback

I Within VM’s improvement can be seen

Stefan Metzmacher io uring (19/21)

https://lists.samba.org/archive/samba-technical/2023-February/thread.html#137945


The road to upstream (smb2 server.c)

I Refactoring of smb2 server.c

I add optional IORING OP SENDMSG, IORING OP RECVMSG support

I There are structural problems with splice from a file

I I had a discussion with the Linux developers about it:

I The page content from the page cache may change unexpectetly

I https://lists.samba.org/archive/samba-technical/2023-February/thread.html#137945

I We may not able to use IORING OP SENDMSG/SPLICE by default

I Maybe IORING OP RECVMSG/SPLICE is possible

I At least we can have only 1 one copy instead of two:

I IORING OP SENDMSG ZC is able to avoid copying to the socket

I we get an extra completion once the bu↵ers are not needed anymore

I This gives good results, between with and without

IORING OP SENDMSG/SPLICE

I But I don’t have numbers as it doesn’t work on loopback

I Within VM’s improvement can be seen

Stefan Metzmacher io uring (19/21)

https://lists.samba.org/archive/samba-technical/2023-February/thread.html#137945


The road to upstream (smb2 server.c)

I Refactoring of smb2 server.c

I add optional IORING OP SENDMSG, IORING OP RECVMSG support

I There are structural problems with splice from a file

I I had a discussion with the Linux developers about it:

I The page content from the page cache may change unexpectetly

I https://lists.samba.org/archive/samba-technical/2023-February/thread.html#137945

I We may not able to use IORING OP SENDMSG/SPLICE by default

I Maybe IORING OP RECVMSG/SPLICE is possible

I At least we can have only 1 one copy instead of two:

I IORING OP SENDMSG ZC is able to avoid copying to the socket

I we get an extra completion once the bu↵ers are not needed anymore

I This gives good results, between with and without

IORING OP SENDMSG/SPLICE

I But I don’t have numbers as it doesn’t work on loopback

I Within VM’s improvement can be seen

Stefan Metzmacher io uring (19/21)

https://lists.samba.org/archive/samba-technical/2023-February/thread.html#137945


Future Improvements

I I have a prototype for a native io uring tevent backend:

I The idea is to avoid epoll and only block in io uring enter()

I But the semantics of IORING OP POLL ADD,REMOVE are not

useable

I https://lists.samba.org/archive/samba-technical/2022-October/thread.html#137734

I We may get an IORING POLL CANCEL ON CLOSE in future

I And a usable IORING POLL LEVEL

I We can use io uring deep inside of the smbclient code

I The low layers can just use samba io uring ev context get ring()

I And use if available without changing the whole stack

Stefan Metzmacher io uring (20/21)

https://lists.samba.org/archive/samba-technical/2022-October/thread.html#137734


Future Improvements

I I have a prototype for a native io uring tevent backend:

I The idea is to avoid epoll and only block in io uring enter()

I But the semantics of IORING OP POLL ADD,REMOVE are not

useable

I https://lists.samba.org/archive/samba-technical/2022-October/thread.html#137734

I We may get an IORING POLL CANCEL ON CLOSE in future

I And a usable IORING POLL LEVEL

I We can use io uring deep inside of the smbclient code

I The low layers can just use samba io uring ev context get ring()

I And use if available without changing the whole stack

Stefan Metzmacher io uring (20/21)

https://lists.samba.org/archive/samba-technical/2022-October/thread.html#137734


Questions? Feedback!

I Stefan Metzmacher, metze@samba.org

I https://www.sernet.com

I https://samba.plus

Slides: https://samba.org/˜metze/presentations/2023/SambaXP/

Stefan Metzmacher io uring (21/21)

https://www.sernet.com
https://samba.plus
https://samba.org/~metze/presentations/2023/SambaXP/

