
SMB3.1.1 POSIX/Linux Extensions

Steven French
Principal Software Engineer (Azure Storage Microsoft)
and member of the Samba team

SMB3.1.1

Outline

 What is POSIX?

 POSIX vs. Linux

 Why SMB3.1.1?

 What are the SMB3.1.1 POSIX/Linux Extensions?

 What works today? And how to try them out?

 Wireshark status

 Improving the documentation …

 Where do we go from here?

SMB3.1.1 POSIX Extensions status

 For the Linux client POSIX extensions were available
experimentally starting in the 5.8 Linux kernel (in 2020) and
much improved by the 5.15 kernel (released in October
2021)

 Samba’s “smbclient” tool has support for POSIX extensions

 Ksmbd server has had support for the POSIX extensions for
a few years

 Samba server now has partial support for the POSIX
extensions

 And there are more …

What is POSIX?

 POSIX was created in 1988

 Later standardized via “The Austin Group” in the late 90s
 Current is https://pubs.opengroup.org/onlinepubs/9699919799/

 SMB was created four years earlier, in 1984 by Dr. Barry
Feigenbaum at IBM

 SMB3.1.1 was created in 2015 and has been extended
multiple times

 POSIX is old and the file system calls

haven’t changed much

 But Linux keeps evolving

Linux > POSIX
⚫ Linux API is so much bigger than POSIX!

Currently huge number of syscalls!

⚫ Try “git grep SYSCALL_DEFINE”

⚫ currently 879!

⚫ 18 more than when we checked at SDC!

⚫ 500+ are even documented

“man syscalls”

⚫ Linux FS layer alone has 223!

⚫ Vs. only about 100 POSIX API calls

Linux File System API grows

Syscall name Kernel Version

introduced

epoll_pwait2 5.11

mount_setattr 5.12

faccessat2 5.8

close_range 5.9

Goals: Fast! Easy! Transparent!

⚫ Repeating an older slide about goals of SMB3.1.1:

− Fastest, most secure general purpose way to access file data, whether

cloud or on premises or virtualized

− Implement all reasonable Linux/POSIX features - so apps don’t know they

run on SMB3 mounts (vs. local)

− As Linux evolves, and needs new features, quickly add to Linux kernel

client and Samba and ksmbd

Why Not Other Protocols?

− SMB3.1.1 is easily extensible

− SMB3.1.1 works tightly with a set of protocols which can do more than any
other file system protocol

− SMB3.1.1 has the best, most exhaustive set of testcases (not just smbtorture
…)

− SMB3.1.1 and related protocols have more documentation (and
documentation that has been tested and verified)

− SMB3.1.1 is proven across multiple client types, OS, architectures (and
POSIX extensions have been a moving target, done before ...) and has been
extended before …

− (And don’t forget … SAMBA rocks! And multiple open source server choices
that support SMB3.1.1 (including ksmbd and Samba) And cifs.ko is one of
most active FS)

Why are extensions needed?

SMB2 and later (including SMB3.1.1) default file semantics are
largely based on Windows behavior which differs from POSIX
(and Linux) in some ways

What about SMB1/CIFS? It had Unix Extensions…

▪ DO NOT USE OLD INSECURE DIALECTS (lookup Ned Pyle’s
presentations …)

▪ SMB3.1.1 is faster, more secure, simpler, better

▪ And broadly implemented by modern clients and servers
▪ And the SMB3.1.1 POSIX extensions are simpler than the old

CIFS Unix Extensions and intended to completely replace their
use

What works today without POSIX Extensions

⚫ Normal file and directory operations (open, read, write, fsync, close) to all servers,
and hardlinks and even client handled symlinks (“mfsymlinks”), case preserving
file name behavior, mapping almost all problematic characters in filenames (“\” is
the one exception)

⚫ To most servers:

− Sparse file operations: setsparse, query allocated ranges, punch hole

− copy_range and clone_range (clone range is less commonly supported)

− Special file handling via reparse points (or xattrs ala “sfu”)

− Xattrs

⚫ Emulation of mode bits via various alternatives (cifsacl, modefromsid)

What can be emulated today without POSIX Extensions

⚫ fcollapse and finsert

⚫ Most delete and rename scenarios (some exceptions is where the rename
fails with access denied with rename onto an existing file)

⚫ Most byte range (easier with OFD rather than “posix” BRLs) and whole file
lock scenarios

⚫ Most special mode bits (e.g. sticky bit)

But POSIX apps expect

• Case sensitive file and directory names
• Primitive mode bits returned (“0777” perms) rather

than a “rich ACL”
• Delete of open files (and these not seen by readdir)
• Rename of open file
• Advisory (rather than mandatory) byte range locks
• 2 additional fields returned by statfs (total/free inodes)

What if POSIX and Windows semantics collide?

If the same file is being used by Windows and
Linux clients – how do we deal with semantic
differences?
- Lessons from the CIFS (SMB1) Unix Extensions
- What about RichACLs and mode bits?

What about the Apple Mac extensions to SMB3.1.1?

… They only address part of what Linux needs

How can I try the SMB3.1.1 POSIX extensions?

• Client implementations include: Linux kernel (cifs.ko),
especially 5.8 kernel and later, and newer versions of Samba’s
smbclient (thanks Volker)

• Server versions include Ksmbd server (thanks Namjae) as well
as newer Samba server (thanks JRA, Volker, David etc.) …

• Third party implementations also were tested at SNIA SDC
SMB3 plugfest

Demo

Some examples of where POSIX Extensions are needed …

Case Sensitivity – without extensions can open the wrong file …
and owner and mode bits usually set to defaults (not real owner)

SMB3.1.1 POSIX Extensions are Easy to Understand

⚫ A simple negotiate context, an open context, a new file info level and a new
fsinfo level

⚫ Everything else relies on existing SMB3.1.1 features

Demo

Some examples to Samba and KSMBD (kernel server) using
the SMB3.1.1 POSIX Extensions

Setting up Samba and ksmbd shares are easy

NB: Samba requires “smb3 unix extensions = yes” in smb.conf

Additional Samba server configuration advice

- Build Samba with “./configure.developer”

- To Support for reporting mode bits currently Samba
server requires disabling “acl_xattr” (do not enable saving
ACLs to xattr this in “vfs objects” on the share if you want
to test returning mode bits)

- Consider relaxing the “create mask”
- smb.conf parameters “create mask = 0777” and “directory mask = 0777”

Mounting from the Linux kernel client

- Remember to add “posix” on mount command

- Also consider “mfsymlinks” if want client only symlinks

Can display owner and mode bits

(bug in group owner vs. user owner – fixed now, see next slide)

Note exact mode bits and owner reported w/POSIX Extensions

Query FS Info – includes additional posix fields

Query FS Info – additional POSIX fields

Samba

server

works

now too!

More details: Local vs non-POSIX SMB3.1.1
(example to Samba server)

More details: Local vs new POSIX SMB3.1.1
(example to Samba server)

Better performance (POSIX QFS Info now compounded)

Before:

Now:

SMB3.1.1 POSIX Extensions
details

Additional information can be found at:

 For the SMB3.1.1 POSIX Extensions see the Samba wiki at:
SMB3-Linux – SambaWiki
(https://wiki.samba.org/index.php/SMB3-Linux).
contributions to improve this page are welcome

 Information on the older SMB1 extensions can be found at
UNIX Extensions – SambaWiki e.g. and in the olderSNIA
doc

https://wiki.samba.org/index.php/SMB3-Linux
https://wiki.samba.org/index.php/SMB3-Linux
https://wiki.samba.org/index.php/UNIX_Extensions

What Next?
Missing Features and
More Linux optimizations …

What Next?

− Examine the xfstest skips (and failures) in much
detail and add small incremental changes

⚫ “xfstests” is the standard Linux fs functional test
suite and no one file system can pass all tests due
to various fs optional features.

⚫ Some can be emulated some need new flags

− Where that is not possible, consider adding new
POSIX extensions version (simply adding additional
uuid to the POSIX negotiate context)

− What about minor extensions to reduce roundtrips and
provide better/safer emulation?

⚫ Fcollapse and finsert are two examples

⚫ NTFS fsctls like FSCTL REARRANGE_FILE and
SHUFFLE_FILE could help if available over SMB3

⚫ What about exposing Windows’s
FILE_FLAG_POSIX_SEMANTICS

⚫ More compounding can help too

⚫ Add fsctl for rename swap (rename exchange)?

What Next?

Improving server side symlink handling

 When encountering client only symlinks (mfsymlinks) this is
not an issue

 But for server side symlinks rely on server supporting
reparse points to report symlinks

 This can be improved by simply improving the handling of
“stopped on symlink” error (which includes sufficient
information in most cases to avoid needing to query
reparse points)

Examples from xfstest investigations

− Add support for renameat2 and rename exchange

− POSIX ACLs (can be emulated and there is
pushback on implementing primitive POSIX ACLs)

− Support for additional chattr flags (“immutable” and
“noatime” updates e.g.)

− fallocate –collapse-range

− Dedupe support

− Defragmentation support (may require VFS changes)

Examples from xfstest investigations

− Richacl support (tests 362 through 370) ??

− O_TMPFILE support (emulatable, but VFS changes
would help)

− FITRIM support (may be emulatable)

− Quota support (may be emulatable already)

− Support for NFS export (nfs server on smb3 mounts)

− Case sensitive xattrs (EAs)

− SELinux support

Examples from xfstest investigations

− Support for online ‘label manipulation’ (see e.g.
xfstest generic/492)

− Support for casefolding (“chattr +F”)

− Would native (rather than emulated) BSD flock
(whole file lock) support help?

More details (with example xfstest #)

− atime options irrelevant (test 003)

− O_TMPFILE (generic/004)

− Defragmentation (018)

− Renameat2 (025)

− POSIX ACLs (026)

− FITRIM (038)

− Metadata journaling (049)

− Freezing fsctl (068) - https://lwn.net/Articles/287435/

https://lwn.net/Articles/287435/

More details (continued)

− Chattr +ia (079) (“immutable”, “append only”)

− Chattr +A (277) (“no atime updates”)

− Linux disk quotas (082)

− Security (093) and trusted (097) xattr namespaces

− preallocated extent not marked with
FIEMAP_EXTENT_UNWRITTEN (094)

− Dedupe (121)

− Advisory locks (131)

More details (continued)

− suid/sgid bits are cleared after direct write (test 355)

− Richacls (362)

− Encryption support (395)

− Timestamp bounds unknown (402)

− chattr +d (“nodump”) (424)

− Information about fiemap of attribute fork (425)

− NFS export (open by inode #) (426)

− Backslash in name (“Key urk��moo does not exist for
FAKESLASH test??” in test 453)

More details (continued)

− Conflicting xattrs (test 454)

− XATTR_REPLACE (test 486)

− xfs_io label (492)

− Lsattr -d (508)

− Xattrs with slashes in name (523)

− Casefolding support (556)

− Dupremove utility (559), actton utility (596)

− Fsverity (571)

Thank you for your time

⚫ A very exciting time for ...

S

M

B

3

.

1

.

1

+

	White Template
	Slide 1: SMB3.1.1 POSIX/Linux Extensions
	Slide 2: SMB3.1.1
	Slide 3: Outline
	Slide 4: SMB3.1.1 POSIX Extensions status
	Slide 5: What is POSIX?
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Goals: Fast! Easy! Transparent!
	Slide 10: Why Not Other Protocols?
	Slide 11: Why are extensions needed?
	Slide 12: What about SMB1/CIFS? It had Unix Extensions…
	Slide 13: What works today without POSIX Extensions
	Slide 14: What can be emulated today without POSIX Extensions
	Slide 15: But POSIX apps expect
	Slide 16: What if POSIX and Windows semantics collide?
	Slide 17: What about the Apple Mac extensions to SMB3.1.1?
	Slide 18
	Slide 19: How can I try the SMB3.1.1 POSIX extensions?
	Slide 20: Demo
	Slide 21: Case Sensitivity – without extensions can open the wrong file … and owner and mode bits usually set to defaults (not real owner)
	Slide 22: SMB3.1.1 POSIX Extensions are Easy to Understand
	Slide 23: Demo
	Slide 24: Setting up Samba and ksmbd shares are easy
	Slide 25: Additional Samba server configuration advice
	Slide 26: Mounting from the Linux kernel client
	Slide 27: Can display owner and mode bits
	Slide 28: Note exact mode bits and owner reported w/POSIX Extensions
	Slide 29: Query FS Info – includes additional posix fields
	Slide 30: Query FS Info – additional POSIX fields
	Slide 31: More details: Local vs non-POSIX SMB3.1.1
	Slide 32: More details: Local vs new POSIX SMB3.1.1
	Slide 33: Better performance (POSIX QFS Info now compounded)
	Slide 34: SMB3.1.1 POSIX Extensions details
	Slide 35
	Slide 36: Additional information can be found at:
	Slide 37
	Slide 38
	Slide 39
	Slide 40: What Next? Missing Features and More Linux optimizations …
	Slide 41: What Next?
	Slide 42: What Next?
	Slide 43: Improving server side symlink handling
	Slide 44: Examples from xfstest investigations
	Slide 45: Examples from xfstest investigations
	Slide 46: Examples from xfstest investigations
	Slide 47: More details (with example xfstest #)
	Slide 48: More details (continued)
	Slide 49: More details (continued)
	Slide 50: More details (continued)
	Slide 51: Thank you for your time

