
FIPS 140-3 and
Samba/FreeIPA

challenges in RHEL 9

Alexander Bokovoy
Julien Rische

Red Hat // Samba Team

Who are we?

Alexander: Sr. Principal software
engineer at Red Hat

Samba Team member

FreeIPA core developer

Julien: Software engineer at Red Hat

MIT Kerberos maintainer in Fedora
and Red Hat Enterprise Linux

FIPS 140

FIPS 140-2 in
RHEL 8

Crypto modules

System-wide crypto policy

Application-level
compliance

FIPS 140-3 in RHEL 9

Cryptographic module validation program

Implementation under test

Module name Start Date

Red Hat Enterprise Linux 9 libgcrypt 6/15/2022

Red Hat Enterprise Linux 9 gnutls 6/15/2022

Red Hat Enterprise Linux 9 kernel 6/15/2022

Red Hat Enterprise Linux 9 nss 6/15/2022

Red Hat Enterprise Linux 9 OpenSSL FIPS Provider 6/15/2022

https://csrc.nist.gov/Projects/cryptographic-module-validation-program/modules-in-process/iut-list

FIPS 140-3 changes

A lot of deprecated functionality, sometimes in-flight after
submitting the module for certification

FIPS 186-5 removes DSA completely, published in February
2023

FIPS 180-4 is being revised to remove SHA-1 completely by
2030

Generally, NIST does not look at the protocol level modernisation

Certification applies to a vendor-provided crypto modules

Compliance is a matter between a vendor, a customer, and a FIPS
auditor

From NIST SHA-1 transition
announcement

https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps

Laboratories are opinionated

Accredited laboratories differ in opinion on NIST guidance

SHA-1 not allowed anymore at all now

Crypto modules cannot instantiate non-well-known curves at all

Certain APIs might be asked to be removed by one lab but not
the other

Certification takes long time, labs anticipate a future guidance
change

FIPS 140-3 compliant application
cannot interoperate with Active
Directory

Active Directory only supports AES ciphers from RFC 3962

FIPS 140-3 does not allow

Use of RFC 3962 ciphers

Use of SHA-1 hashes other than verifying legacy signatures

How these requirements are
enforced?

System-wide crypto policy

crypto-policies(7)

set of rules to derive a crypto module
and application configuration

allows applying policy specific to a
mode OS runs in

DEFAULT , FIPS , FUTURE , LEGACY , etc.

System-wide
crypto policy

crypto-policies(7)

Sample generated
configurations for RHEL
8, RHEL 9, Fedora

https://gitlab.com/redhat-crypto/fedora-crypto-policies/-/tree/rhel8/tests/outputs
https://gitlab.com/redhat-crypto/fedora-crypto-policies/-/tree/rhel9/tests/outputs
https://gitlab.com/redhat-crypto/fedora-crypto-policies/-/tree/master/tests/outputs

System-wide crypto policy

crypto-policies(7)

supports sub-policies to tweak the
main policy

e.g. AD-SUPPORT , NO-SHA1 , ...

sub-policies can be combined when
defining the system policy

e.g. FIPS:AD-SUPPORT ,
DEFAULT:NO-SHA1

System-wide crypto policy

RHEL 9 DEFAULT policy config for MIT Kerberos

[libdefaults]
permitted_enctypes = aes256-cts-hmac-sha1-96 aes256-cts-hmac-sha384-192 aes128-cts-hmac-sha256-128 aes128-cts-hmac-sha1-96

RHEL 9 FIPS 140-3 policy config for MIT Kerberos

[libdefaults]
permitted_enctypes = aes256-cts-hmac-sha384-192 aes128-cts-hmac-sha256-128

Application-level policy compliance

Application-level
compliance

Crypto modules patched to load a
system-wide crypto policy

no need to manually define anything
in crypto library configuration per
each application

Application-level
compliance

Applications would fail when calling
non-compliant crypto primitives

Applications need to be modernized
to stay compliant

Application-level
compliance

Application modernization

Defaults

Crypto algorithm agility

Data migration

Application modernization

Application
modernization: defaults

New installs are easy

FreeIPA changed to use aes256-sha2
as Kerberos master key

With the same encryption types as
before, default crypto-policy
prevents use of banned keys

Password change obeys default
crypto-policy

Algorithm agility

Interoperability is hard

Protocols aren't updated magically

RFC update process might take years

Adjusting implementations takes
years

Old deployments need to talk to new
systems

New deployments need to accept old
systems

Algorithm agility: PKINIT case

PKINIT Algorithm Agility, RFC 8636

Adds SHA-1, SHA-256, SHA-512

PKINIT RFCs requirements

DH exchange with ANS X9.42 encoding

Certain MODP groups must be supported RFC 4556

[X] Group 2

[X] Group 14

[] Group 16

https://datatracker.ietf.org/doc/rfc8636/
https://datatracker.ietf.org/doc/rfc4556/
https://datatracker.ietf.org/doc/html/rfc2412#appendix-E.2
https://datatracker.ietf.org/doc/html/rfc3526#section-3
https://datatracker.ietf.org/doc/html/rfc3526#section-5

Algorithm agility: PKINIT
case

PKINIT RFCs ambiguity

digestAlgorithm and
signatureAlgorithm might be
different

Heimdal thinks so, OpenSSL CMS
does not

https://github.com/openssl/openssl/issues/18729

Algorithm agility: PKINIT
case

PKINIT implementations

No full agility in MIT Kerberos yet

No ECC support in MIT Kerberos

Active Directory does not support
new MODP groups

Active Directory uses default digest
of SHA-1 when not using ECC

Heimdal defaults to MODP group 2

Algorithm agility: PKINIT
case

FIPS 140-3 enforcement with MIT
Kerberos

Relies on OpenSSL implementation

Two OpenSSL FIPS providers
(upstream and RHEL downstream)

Different labs to certify both crypto
modules

What can go wrong?

Algorithm agility: PKINIT
case

FIPS 140-3 enforcement with MIT
Kerberos

Heimdal defaults to MODP group 2

OpenSSL cannot decrypt this
group

Heimdal provides MODP group 14
but OpenSSL fails eariler

OpenSSL breaks interoperability

Algorithm agility: PKINIT
case

FIPS 140-3 enforcement with MIT
Kerberos

Disable SHA-1 , no way to verify
Windows PKINIT clients

Same to older RHEL 7/8, defaults
to SHA-1

Algorithm agility: PKINIT
case

FIPS 140-3 enforcement with MIT
Kerberos

Move default to SHA-256 for
supportedCMSTypes

no way to verify Windows, old
RHEL 7/8

Algorithm agility: PKINIT
case

FIPS 140-3 enforcement with MIT
Kerberos

Switch dynamically between
OpenSSL crypto providers depending
on the client

allows to support legacy clients if
system-wide crypto policy permits

FIPS:AD-SUPPORT-LEGACY

Algorithm modernization: Active Directory

Move to newer AES-based ciphers

new variations of SAMR, LSA, NETLOGON calls

Tighten up use of crypto material

samba.trust_utils.CreateTrustedDomainRelax

used by FreeIPA and samba-tool

Still not enough for FIPS 140-3

Data migration

Samba AD data migration

Imaginary case for future Samba AD

Access to old encrypted keys requires extended crypto policy

e.g. FIPS:AD-SUPPORT-LEGACY before migration, then
FIPS:AD-SUPPORT

Active Directory DC case:

Kerberos keys need to be regenerated

Plain-text passwords exist, offline regeneration possible?

Active Directory domain member case:

Machine account password / keytab regeneration

FreeIPA data migration

Access to old encrypted keys requires extended crypto policy

e.g. FIPS:AD-SUPPORT-LEGACY before migration, then
FIPS:AD-SUPPORT

FreeIPA DC case:

No plain-text passwords exist, full password/key refresh is
needed

time to move to passwordless?

Keytabs with service keys need to be rotated, can be automated

FreeIPA data migration

FreeIPA client case:

Keytabs with host keys need to be rotated, can be automated

Passwordless service update using certificates:

Map certificate to a service

use PKINIT authentication to obtain a Kerberos ticket

rotate Kerberos service keys

Questions?

Mastodon: @abbra:mastodon.social
Blog: vda.li/en

https://mastodon.social/@abbra
https://vda.li/en

