Conditional ACEs and Claims

how do they work and what are they good for?

Douglas Bagnall with a little help from Joseph Sutton

SAMBA dbagnall@samba.org
catalystid douglas.bagnall@catalyst.net.nz

Conditional ACEs

ACEs are Entries in an Access Control List

typically an ACE allows or denies specified access
to a specified user, group or session

this allows fine-grained control, but grain is grain

based on https:/commons.wikimedia.org/wiki/File:Kiefer_Holz.JPG © Philipp Zinger CC-SA 3.0

Rop Zinger CC-SA 3.0

(distance_from_x < 200)

-~

-
-

- .

~

"s, \9 o '»"
.. Or:like this
g PR OV

~

.\ "l

or like this

(luminosity < 136 && distance < 200)

A conditional ACE is a “callback” ACE

XA allow callback ACE
XD deny callback ACE

named for their implementation in Microsoft's AuthZ API

type D

Si 11 p I e access mask
AC E SID (variable length)
structure

S-1-1-0

XD S-1-1-0;eXtRa sTuFf

type flags length
0 | **0 | s

callback
ACE variable len

SID (variable length) S-1-1-0
structure

callback ACE data (variable length)

eXtRa sTuFf

XD S-1-1-0;eXtRa sTuFf

type flags length
0 | **0 | s

callback
ACE variable len

SID (variable length) S-1-1-0
structure

callback ACE data (variable length)

eXtRa sTuFf

s

wanling gibbeous

Windows has a type /1) flags length

. (max 65535)
mechanism for
registering arbitrary access mask

callbacks

SID (variable length) S - 1 . 1 . @

possibly completely
unused, at least for callback ACE data (variable length)

allow and deny
OI IOI In ! @7 3d

XD S-1-1-0; (x == 42)

conditional ACEs
(«) . (max 65535)
vl B -
access mask
prefix and ()

markerS in SDDL SID (variable length) 8_1 _—I _@

a t x f8 02 00 00 00

X 00 04 2a 00 00 00 00 Q0
00 00 03 01 31

D: (XD; ;GA;;;:;S-1-1-0;(x == 42))

SD,and ACL wrappers with 64k linpts

ength
t
this
.
compiles tc

thIS SID (variable length) 8_1 1 @

a r t x f8 02 00 00 00
X 00 04 2a 00 00 00 00 00
00 00 03 01 81

(X == 42)
a r t X magic number
f8 local attribute
02 00 00 00 length of name (in bytes)
X Q0 name (utf-16)
04 inté64
22 00 00 00 00 00 00 00 value(42)
O3 display integer sign (none)
02 display integer base (decimal)
81 equality operator

Conditional ACE ternary logic

there is an unknown type
(works as you might expect)

OR true false unknown
true T T T
false T F ?
AND true false unknown _
- unknown ? ?
true T - ?
false F = F
2 = 2
unknown 7 ‘ NOT
true F
false T

unknown ?

Conditional ACE ternary logic for (x == 42)

if there is no local attribute “x”, the result is unknown
If local x is not an integer, the result is unknown
If this is an XD ACE, unknown means yes, deny

If this is an XA ACE, unknown means no, do not allow

Conditional ACE attributes

what is this “local attribute” and
where did it come from?

put that thought aside for the moment.

Conditional ACE examples

(XD FA;;;S-1-1-0; (@QUser.Title == "PM"))

meaning: users with the title “PM”
are not allowed to access this

(QUser.Title=="PM" && (@User.Division=="Finance” || @User.Division =="Sales")

meaning: selects users with the title “PM”
from the “Finance” or “Sales” divisions

Conditional ACE examples

(Member_of {SID(S-1-234-56), SID(BO)} && @Device.Bitlocker)

allows users who are members of both these SIDs if the
device attribute “Bitlocker” is also true.

(QUser .Project Any_of @Resource.Project)

allows users whose “Project” attribute is in the resource
attribute “Project” (which is presumed to be a list of 1 or

more values).

Conditional ACE examples

0:SYG:SYD: (XA;0ICL;CR;;;WD; (QUSER.ad://ext/AuthenticationSilo == "tier 0"))

‘@USER.ad:/ext/AuthenticationSilo” is a computed attribute and
part of how authentication silos work.

This is allowing access to those users computed to be in the
“tier 0" silo.

(QUser.clearancelLevel >= @Resource.requiredClearance))

Maybe this user is a spy

Conditional ACE operators

> >= == <= < && “

Member_of
Member_of_Any
Device_Member_of
Device_Member_of_Any
Contailns

Any_of

Exists

composite list constructor { }

Not_Member_of
Not_Member_of_Any

Not _

Device_Member_of

Not_Device_Member_of_Any
Not_Contains

Not_Any_of

Not_Exists

logical grouping ()

Conditional ACE types

: : : : only int64 can be expressed in SDDL;
1nt64 1nt32 1intl6 1nts have flags for sign and base display hints

Unicode string "hello”

octet string 68656c6cHT0a

composite {1, 2, {3, "four”}, SID(BA)}
SID SID(S-1-2-3)

result type true, false, or unknown; true or false can be expresed as 1 and O

Conditional ACE attributes

@User. claims issued to the user
@Device. claims issued to the user's computer
@Resource. from a Resource Attribute ACE in the

accessed thing's SACL.

“local” claims issued to the authenticated principal

Syntactically, in SDDL, local attributes are restricted to ASCIlI-word-ish strings

Resource Attribute ACE

(RA;CI;;;;WD; ("Project”,TS,0,"Samba"”,"Heimdal"))
(RA;CI;;;;S-1-1-0; ("requiredClearance”,TU,0,3))

(RA; ;533 WD; (: : :))
TI signed 64-bit integer TD SID string

TU unsigned 64 bit integer TX octet string

TS unicode string TB boolean value (1|0)

note: types don't line up exactly with Conditional ACE types

Resource attributes are from another new ACE type

They hide in SACLs
accessed via the @Resource. conditional ACE syntax
these examples are the same:

D: (XA;;;;WD; (@QUser.foo == 1))

D: (XA;;;;WD; (GUser.foo == @Resource.fo00))
S:(RA;;;;WD; ("fo0o",T1,0,1))

but the conditional ACE could be inherited

User claims, device claims, local claims

from the ACE's point of view these come from the security token.

{SID, SID, SID,..}, security tokens have these
privilege mask, and need to have these

rights mask,

{user claim, user claim, user claim,..},
{device claim, device claim,..},

{local claim, local claim, local claim,..},
{device SID, device SID,..},

A Claim object

same types as resource ACE:

name
value type
flags inté64
uinté64
values unicode string
(array + count) SID string
boolean

byte string

Security token claims come from the PAC

A kerberos ticket can contain a PAC;
a PAC can contain “claims blobs”.

PAC claims seem to have different types again
(no SIDs, octet strings).

The PAC claims come from the KDC.

The KDC looks stuff up in Idb.

What are claims, really?

A snapshot of values from the database that float
off with a kerberos ticket, cleverly wrapped so that
things using the ticket can trust the claims and

don't need to pester the database.

So things on the edge can make complex secure

authorization decisions, without database access.

Conditional ACEs without Kerberos?

It could work if you can ask a DC
very slowly

otherwise conditions resolve to unknown
(deny for deny ACEs, not allow for allow ACEs)

wherefore claims and condtional ACEs?

Claims enable secure decentralisation of complex

authorization decisions

Conditional ACEs are the mechanism used

Authentication silos involve magic computed claims

2012R2 functional levels

Questions?

(ask Joseph)

