
Azure Files: “mount” the Cloud

2 June 2022
David Goebel

Microsoft

Azure Files (AF)
Talk Topics:
0 Review of Azure Files design.
1 Schema impacting new features, using the example

of Large File Shares (LFS).
2 How new features are enabled in a service with zero

downtime.

SMB Protocol History
• <= Srv03 was V1.3 and carried lots of baggage.
• Vista: SMB 2.02 was a vast simplification to reduce chattiness and map SMB

commands to NT Irps and compound commands. Durable handles allowed
handles to be reconnect after a network hiccup.

• Win7: SMB 2.1 introduced resilient handles and “leases” which supersede
the older oplock scheme taken from 1.3

• Win8: SMB 3.0 added encryption, leases on directory handles, multichannel
& RDMA (SMB Direct), and Persistent handles to support CA (Continuously
Available) shares on clustered servers.

• Win8.1: SMB 3.0.2 added cluster enhancements.
• Win10: SMB 3.1.1 adds negotiated encryption algorithm, secure

negotiate and other security features.

Fundamental Concepts
• AF is not the Windows SMB server (srv2.sys) running on Azure

nodes.
• AF is a completely new SMB server implementation which uses

Azure Tables and Blobs as the backing store.
• AF leverages the highly available and distributed architecture

of Tables and Blobs to imbue those same qualities to the file
share.

Current AF Status
• SMB 3.1.1 with encryption, persistent handles, and Multichannel.
• Three tiers: Standard, Standard Large File Share (LFS), and Premium Files

(fully SSD backed storage).
• Per-file ACLs with Kerberos authentication & AD integration. NTLMv2 with

AccountKey still an option.
• Share snapshots.
• Removed limitation on Private Use Area characters (0xE000 to 0xF8FF).
• Some NTFS features not supported.

Current AF Limits
Metric

Tier
Max Share
Size

Max Share
IOPS*

Max Share
Throughput

Max File
IOPS

Max File
Throughput

Standard 5 TiB 1000 60 MiB/sec 1000 60 MiB/sec

LFS 100 TiB 20,000 300 MiB/sec 1000 60 MiB/sec

Premium 100 TiB 100,000 10,340 MiB/sec 8000 300 MiB/sec

*AF shares support bursting, so IOPS computations are not completely straightforward. For details see:
https://docs.microsoft.com/en-us/azure/storage/files/understanding-billing#provisioning-method

https://docs.microsoft.com/en-us/azure/storage/files/understanding-billing

Linux Client Support Notes
- Directory leases added in 4.18 kernel
- Encryption added in 4.11
- Persistent Handles mount option added in 4.1 kernel (and important fixes added in 4.11)

- RHEL7.5 supports Persistent Handles and encryption but not Directory Leases
- RHEL8.1 and later (RHEL8.6 and RHEL9 are the current LTS versions) supports all 3.
- Debian 10 and Debian 11 support all 3
- Ubuntu 20.04 (5.4 kernel and later), Ubuntu 21 and Ubuntu 22.04 (most current LTS) all
support all 3
- SLES15SP2 and later (SuSE enterprise server 15, service pack 2 or 3) support all 3
- OpenSuSE Leap version 15.2 and later support all 3.

SMB3
Encryption
Enabled
Scenario

Note: Port 445 outbound must be unblocked.

Scenarios Enabled By AF
• Existing file I/O API (Win32, CRT, etc.) based applications, i.e. most

business applications written over the last 40 years, should “just
work”®. More on this in “Lessons Learned” later.

• A business can stage existing workloads seamlessly into the cloud
without modification to mission critical applications.

• Some minor caveats that will become more minor over time.

What about REST?
If you’re a true believer in the benefits of statelessness, SMB and
REST access the same data in the same namespace so a gradual
application transition without disruption is possible.

Ø Container operations: Create, List, Delete, Get/Set properties, Get/Set metadata,
Get/CreatePermission, Lease, Snapshot, and Restore

Ø File/Directory Operations: Create, Delete, Get/Set properties, Get/Set metadata,
Rename, ListHandles, and ForceCloseHandles

Ø File only operations: ListRanges, GetFile, PutRange, CopyFile, and LeaseFile

Ø Directory only operations: List

\\AccountName.file.core.windows.net\ShareName DNS Load Balancer

for example 157.56.217.32:445

Front End
Node 2

Front End
Node 0

Front End
Node 1

Front End
Node N. . . .

SessionSetup & traffic

Azure Table and Blob Store
Details in next slide

“FrontEnd”: Ephemeral state and immutable state.
“BackEnd”: Solid and Fluid durable state.

SMB is a stateful protocol,
but not all states require expensive distributed transactional semantics

• Some aspects of a file’s state are immutable, such as FileId and
whether it’s a file or a directory.

• Some state is transient, such as open counts, and can be
optimized if loss of this state is acceptable in a disaster.

• Some state is also maintained by the client, like CreateGuid,
drastically reducing the cost of tracking clients.

• State associated with connection mechanics is ephemeral.

Azure Table and Blob Store

• AF uses the underlying Azure Tables infrastructure to store
metadata associated with files/dirs, open handles to them and
other state like byte range locks, leases, etc.

• An Azure Table is a simple NoSQL collection of rows with a common
column schema and sorted / searchable by a subset of ordered ‘key’
columns.

• Two types of keys: Partition (coarse) or Row (fine).

AF Tables
• Azure Tables allows associating a set of tables as a group.

• Within a partition, a single request can atomically operate on multiple tables in this group.

• An AF share’s metadata is stored as a group of tables, the most notable of which are:
File A table of all files and directories. It is a hybrid type, keyed

by either ParentId & FileName, or FileId (64bit like NTFS).
Page The allocated file ranges and their backing page blobs.
Handle All open handles to files and directories.
Lease All currently active SMB leases.
Change Notify Registered change notifies.
Byte Range Locks All currently active byte range locks

Leveraging Azure Table Infrastructure
• Internal transaction APIs allow multiple rows from multiple tables to

be modified with ACID semantics in a single transaction, as long as
they have the same partition key.

• By default, a standard share is wholly contained within a partition.

• With Large File Shares (LFS), a file share may now span many
partitions.

• Premium Files are always LFS.

AF File Table Row Keys

Account Name Share Name ParentId FileName ShareVersion Other Columns

• There are two types of file rows: Namespace and Data
(technically a single merged row type, but showing them separate here for clarity)

• There are two types or keys: Partition and Row
Namespace Rows

Partition Key Row Key

Account Name Share Name FileId ShareVersion Other Columns
Data Rows: Pre-LFS

Partition Key Row Key

AF File Table Row Keys

Account Name Share Name ParentId FileName ShareVersion Other Columns

• There are two types of file rows: Namespace and Data
(technically a single merged row type, but showing them separate here for clarity)

• There are two types or keys: Partition and Row
Namespace Rows

Partition Key Row Key

Account Name Share Name FileId ShareVersion Other Columns
Data Rows: Large File Share Version

Partition Key Row Key

Mapping AF to hardware
Front End

Node 2
Front End

Node 0
Front End

Node 1
Front End
Node N. . . .

EN
Node 1

Back End
Table Node

EN
Node 0

EN
Node N

. . . .

FrontEnd nodes receive connections from clients. Any FE node can service any share.

Pre-LFS a single share/container was within a single partition which is at any time “owned”
by a single BE Table Node. A TableMaster service manages moving partition ownership in
the case of BE node failure or for load balancing. Page blobs are managed by EN nodes.

Mapping AF to hardware
FrontEnd nodes receive connections from clients. Any FE node can service any share.

Front End
Node 2

Front End
Node 0

Front End
Node 1

Front End
Node N. . . .

EN
Node 0

Back End
Table Node 0

EN
Node N

. . .

With LFS a single share/container is partitioned (by FileId) with those partitions “owned” by a
collection of BE Table Nodes. The TableMaster splits/merges partitions to maintain uniform
load. Page blobs are managed by EN nodes (hasn’t changed).

Back End
Table Node N. . .

FE 0 FE 1 FE 2 FE 3 FE NFE 4

EN 0 EN 1 EN 2 EN 3 EN NEN 4

FE = Front End Node
(client connection)

BE = Back End Node
(manages metadata)

EN = Extent Node
(stores actual file data)

Pre-LFS State / Data Flow Topology on a Single Share

BE XMetadata* & File Write Data

*Write Data Only to EN

FE 0 FE 1 FE 2 FE 3 FE NFE 4

EN 0 EN 1 EN 2 EN 3 EN NEN 4

FE = Front End Node
(client connection)

BE = Back End Node
(manages metadata)

EN = Extent Node
(stores actual file data)

Pre-LFS State / Data Flow Topology on a Single Share

BE XMetadata* & File Write Data

File Read Data

*Write Data Only to EN

FE 0 FE 1 FE 2 FE 3 FE NFE 4

EN 0 EN 1 EN 2 EN 3 EN NEN 4

FE = Front End Node
(client connection)

BE-N = Back End Namespace Node
(namespace metadata)

BE-B = Back End Blob Node
(file metadata)

EN = Extent Node
(stores actual file data)

LFS State / Data Flow Topology on a Single Share

BE-N

Namespace Metadata

BE-B0 BE-B1 BE-BN. . . .

FE 0 FE 1 FE 2 FE 3 FE NFE 4

EN 0 EN 1 EN 2 EN 3 EN NEN 4

FE = Front End Node
(client connection)

BE-N = Back End Namespace Node
(namespace metadata)

BE-B = Back End Blob Node
(file metadata)

EN = Extent Node
(stores actual file data)

LFS State / Data Flow Topology on a Single Share

BE-N

Namespace Metadata

BE-B0 BE-B1 BE-BN. . . .

File Metadata* & Write Data

*Write Data Only to EN

FE 0 FE 1 FE 2 FE 3 FE NFE 4

EN 0 EN 1 EN 2 EN 3 EN NEN 4

FE = Front End Node
(client connection)

BE-N = Back End Namespace Node
(namespace metadata)

BE-B = Back End Blob Node
(file metadata)

EN = Extent Node
(stores actual file data)

LFS State / Data Flow Topology on a Single Share

BE-N

Namespace Metadata

BE-B0 BE-B1 BE-BN. . . .

File Metadata* & Write Data

*Write Data Only to EN

File Read Data

File Row Migration
• Changing the partition key was a big deal.
• Additional state now needs to be replicated between the

namespace and data partitions, namely handles and leases.
• A background process performed this for all open files.
• A partition could be in a “mixed” state for an extended period.
• If a handle was used before its file row had been migrated an on-

demand migration is performed.
• This created a seamless experience for customers, unaware that a

major schema change happened underneath them.

Tiering State By Durability Requirement
• A conventional file server treats only actual file data and

essential metadata (filesize, timestamps, etc) as needing to be
durably committed before an operation is acknowledged to the
client (and even then only if opened WriteThrough).

• For true active/active high availability and coherency between
FrontEnd nodes, modified state that normally exists only in
server memory must be durably committed.

Example: Persistent Handles
• New in SMB3, an improved version of Durable Handles.
• Persistent Handles are actually intended to support Transparent

Failover when the server dies.
• Leverages state on the client for replay detection so that ‘once only’

operations are only executed once.
• More create request details durably committed with the handle.
• With Durable Handles SMB 2.1 protocol compliance required us to

artificially limit our capability. With Persistent Handles we have
seamless Transparent Failover.

Front End
Node 2

Front End
Node 0

Front End
Node 1

Front End
Node N. . . .

Azure Table and Blob Store

Client A accessing
\\MySrv\MyShare

Client B accessing
\\MySrv\MyShare

• Clients A & B both accessing the
same share/files via the same
DNS name.

• Same coherency as if they were
talking to a single on-premises
server.

Front End
Node 2

Front End
Node 0

Front End
Node 1

Front End
Node N. . . .

Azure Table and Blob Store

Client A accessing
\\MySrv\MyShare

Client B accessing
\\MySrv\MyShare

• Clients B loses connection to FE1
or FE1 goes down (either due to a
failure of some sort or intentional
software upgrade).

Front End
Node 2

Front End
Node 0

Front End
Node 1

Front End
Node N. . . .

Azure Table and Blob Store

Client A accessing
\\MySrv\MyShare

Client B accessing
\\MySrv\MyShare

• Client B automatically reconnects
to \\MySrv\MyShare and the Load
Balancer selects a new FE.

• This is completely* transparent to
any application running on ClientB.

*completely with SMB3, mostly with SMB2.1

file:///%5C%5CMySrv%5CMyShare

Observations and Lessons Learned
• We now have some experience running the world’s largest SMB server.

• Metadata operations are unfortunately common and expensive for us.

• Even compared to srv2.sys on-prem, AF pays a high price for its durability.
Open/Close and Write-Only handles are particularly bad.

• Some applications may not be suitable for “lift and shift”, especially if they
have never even been run against an on-prem file server.

• In terms of total aggregate End-to-End request time, all that matters are
Create, Close, Read and Write.

Specific Pain Points
• Leaked handles and the implication on (yet to be) deleted files.
• Leaked handles redux: absolute limits.

• Lack of server management people are used to on-prem.
• fopen(“foo”, “a”) on Windows.

• Variability in performance.
• Shared namespace with REST limited by HTTP restrictions.
• In general, poorly written Apps.

Specific Pain Points
• Leaked handles and the implication on (yet to be) deleted files.
• Leaked handles redux: absolute limits. New REST APIs to mitigate.

• Lack of server management people are used to on-prem.
• fopen(“foo”, “a”) on Windows.

• Variability in performance.
• Shared namespace with REST limited by HTTP restrictions.
• In general, poorly written Apps.

Resources:
• Azure Files Documentation Home: https://docs.microsoft.com/en-us/azure/storage/files

• NTFS features currently not supported:
https://msdn.microsoft.com/en-us/library/azure/dn744326.aspx

• Naming restrictions for REST compatibility:
https://msdn.microsoft.com/library/azure/dn167011.aspx

• Authentication Options for Azure Files:
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-active-directory-overview

• LFS Generally Availability announcement:
https://azure.microsoft.com/en-gb/blog/announcing-the-general-availability-of-larger-more-powerful-standard-file-
shares-for-azure-files

https://docs.microsoft.com/en-us/azure/storage/files
https://msdn.microsoft.com/en-us/library/azure/dn744326.aspx
https://msdn.microsoft.com/library/azure/dn167011.aspx
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-active-directory-overview
https://azure.microsoft.com/en-gb/blog/announcing-the-general-availability-of-larger-more-powerful-standard-file-shares-for-azure-files

Thank You!
Questions?

EXTRA SLIDES

Additional Kerberos Details
1. Provision an object in customer’s respective domain service
• User/computer object in AD/AAD DS and an Azure AD

application/service principal in Azure AD Kerberos.

2. Object contains a service principal name
• cifs/<storageaccount>.file.core.windows.net as well as a password

that matches a storage account key specifically for Kerberos .

3. Sets up Kerberos authentication as it basically ‘joins” the
storage account to the respective domain service.

Multi-table requests
• Namespace oriented requests make the heaviest use of

transactions across multiple linked tables in a partition.
• Open/Create/Close will make modifications to at least two

tables. Close can be particularly involved.
• Even reads/writes have to look at byte range locks and

potentially break leases.
• The built-in transaction support made this relatively

painless….before large file shares.

• Ephemeral state: SMB2_FILEID.Volatile, credits, tcp socket
details.

• Immutable state: 64bit actual FileId, IsDirectory
• Solid* durable state: SMB2_FILEID.Persistent, SessionId
• Fluid durable state: Open counts, file names, file size, lease levels

and many more. This is the largest group of states.

Examples of state tiering

*“Solid” here meaning the state is generated by AF and not generally changeable by
normal actions of the client/application while “Fluid” is fully changeable by File APIs.

Achieving active/active high availability
• For a given share, state is tiered between FE nodes and the BE

node depending on its durability requirements.
• All state required to correctly handle requests from different clients

for the same file is managed by the BE node.
• This segregation of state together with table transactions in Azure

enable active/active support.
• Large File Share support added distributed transactions.

Example: Durable Handle Reconnect
• Intended for network hiccups as it assumes all state is still

valid on the server.
• Superseded by Persistent Handles on AF.
• On AF this state is durably persisted on our BackEnd so

we’re able to ‘stretch’ durable handles to recover from
FrontEnd AF failures (planned or otherwise) since it’s
transparent to the client.

• This is important as we’re continually updating AF code
requiring AF service restarts.

