
Steve French

 Azure Storage – Microsoft

Samba Team

How Compliant is the Linux client?

SMB
3.1.1

Legal Statement

This work represents the views of the author(s)
and does not necessarily reflect the views of
Microsoft

Linux is a registered trademark of Linus
Torvalds.

Other company, product, and service names
may be trademarks or service marks of others.

 Linux is a lot more than POSIX ...

 What works today?
● Without POSIX Extensions
● With POSIX extensions

 Some xfstesting details

 What to work on next?

 How to handle Linux continuing to extend APIs and test
it ...

Outline

Linux > POSIX
 Currently huge number of syscalls!

(try “git grep SYSCALL_DEFINE”

well over 850 and 500+ are

even documented “man syscalls”

FS layer has 220). Verified today

 vs

 Only about 100 POSIX API calls

Linux filesystems are not easy! Responsible
for more than 200 of 850 syscalls. +4 since
last year

Syscall name Kernel Version
introduced

epoll_pwait2 5.11

mount_setattr 5.12

faccessat2 5.8

close_range 5.9

 goals: Fast! Easy! Transparent!

● Repeating an older slide about goals of SMB3.1.1:

– Fastest, most secure general purpose way to access file data, whether
cloud or on premises or virtualized

– Implement all reasonable Linux/POSIX features - so apps don’t know they
run on SMB3 mounts (vs. local)

– As Linux evolves, and needs new features, quickly add to Linux kernel
client and Samba and ksmbd

Why Not Other Protocols?

– SMB3.1.1 is easily extensible
– SMB3.1.1 works tightly with a set of protocols which can do more than

any other file system protocol
– SMB3.1.1 has the best, most exhaustive set of testcases (not just

smbtorture …)
– SMB3.1.1 and related protocols have more documentation (and

documentation that has been tested and verified)
– SMB3.1.1 is proven across multiple client types, OS, architectures (and

POSIX extensions have been a moving target, done before ...)
– (And don’t forget … SAMBA rocks! And cifs.ko is one of most active FS)

What works today without POSIX Extensions

● Normal file and directory operations (open, read, write, fsync, close) to all servers, and
hardlinks and even client handled symlinks (“mfsymlinks”), case preserving file name
behavior, mapping almost all problematic characters in filenames (“\” is the one
exception)

● To most servers:

– Sparse file operations: setsparse, query allocated ranges, punch hole
– copy_range and clone_range (clone range is less commonly supported)
– Special file handling via reparse points (or xattrs ala “sfu”)
– Xattrs

● Emulation of mode bits via various alternatives (cifsacl, modefromsid)

What can be emulated today without POSIX Extensions

● Fcollapse and finsert

● Most delete and rename scenarios (some exceptions is where the rename
fails with access denied with rename onto an existing file)

● Most byte range (easier with OFD rather than “posix” BRLs) and whole file
lock scenarios

● Most of the special mode bits

What is problematic without POSIX Extensions

● Rename over an open file

● Files with pending delete showing up in the namespace (e.g. readdir)

● Case sensitive file names

● Locking scenarios that require advisory locks

● Populating a few fields in the statfs response (e.g. total and free inodes)

● Ownership can be preserved with “idsfromsid” on create, but only partially if using
“multiuser,cifsacl” (especially important if accessing from multiple clients). When
using cifsacl, user ownership is ok, but group ownership (gid) of a new file or directory
will be the primary group specified by the user, which is not always the correct gid.

Quick Overview of POSIX Extensions Status

● Linux kernel client:

– 5.1 kernel or later can be used but 5.8 or later recommended. Enable with mount option “posix.” All major features work on client.
● Readdir, create, mkdir, statfs, queryinfo (stat): complete
● Support for new reparse tags for special files mostly complete (needs more testing)

● Samba (experimental tree available, enable with smb.conf parm)

– Server
● All major features work (thanks to JRA). Merge delayed due to time consuming conflicts with other large charges. Special file

handling (Sockets, FIFOs, char device handling) needs to be updated
– Client tools (smbclient)

● Major features work. Additional options could be added to cmd set (Thanks to Volker)
● SMB3 Kernel server (cifsd’s ksmbd.ko)

– Partially implemented: it supports the POSIX negotiate context and partially parses POSIX open context
● 3rd party prototypes

● Wireshark patches available (network analysis)

POSIX Extensions Easy to Understand

● A simple negotiate context, an open context, a new file info level and a new
fsinfo level

● Everything else relies on existing SMB3.1.1 features

Some key problems with or without POSIX Extensions

● O_TMPFILE support

● Mapping of POSIX ACLs and RichACL on the wire

● SELinux integration

● Case sensitive xattrs

● Better integration of Quota and Snapshot API with current Linux local fs tools
(currently can be viewed with cifs-utils like “smbinfo”)

What Next?

– Examine the xfstest skips (and failures) in much
detail and add small incremental changes

● “xfstests” is the standard Linux fs functional test
suite and no one file system can pass all tests
due to various fs optional features.

● Some can be emulated some need new flags
– Where that is not possible, consider adding new

POSIX extensions version (simply adding additional
uuid to the POSIX negotiate context)

– What about minor extensions to reduce roundtrips and
provide better/safer emulation?

● Fcollapse and finsert are two examples
● NTFS fsctls like FSCTL REARRANGE_FILE and

SHUFFLE_FILE could help if available over SMB3
● What about exposing Windows’s

FILE_FLAG_POSIX_SEMANTICS
● More compounding can help too
● What about adding rename swap?

What Next?

Examples from xfstest investigations

– Add support for renameat2 and rename exchange
– POSIX ACLs (can be emulated and there is

pushback on implementing primitive POSIX ACLs)
– Support for additional chattr flags (“immutable” and

“noatime” updates e.g.)
– fallocate –collapse-range
– Dedupe support
– Defragmentation support (may require VFS changes)

Examples from xfstest investigations

– Richacl support (tests 362 through 370) ??
– O_TMPFILE support (emulatable, but VFS changes

would help)
– FITRIM support (may be emulatable)

– Quota support (may be emulatable already)

– Support for NFS export (nfs server on smb3 mounts)

– Case sensitive xattrs (EAs)

– SELinux support

Examples from xfstest investigations

– Support for online ‘label manipulation’ (see e.g.
xfstest generic/492)

– Support for casefolding (“chattr +F”)
– Would native (rather than emulated) BSD flock

(whole file lock) support help?

More details (with example xfstest #)

– atime options irrelevant (test 003)
– O_TMPFILE (generic/004)
– Defragmentation (018)
– Renameat2 (025)
– POSIX ACLs (026)
– FITRIM (038)
– Metadata journaling (049)
– Freezing fsctl (068) - https://lwn.net/Articles/287435/

https://lwn.net/Articles/287435/

More details (continued)

– Chattr +ia (079) (“immutable”, “append only”)
– Chattr +A (277) (“no atime updates”)
– Linux disk quotas (082)
– Security (093) and trusted (097) xattr namespaces
– preallocated extent not marked with

FIEMAP_EXTENT_UNWRITTEN (094)
– Dedupe (121)
– Advisory locks (131)

More details (continued)

– suid/sgid bits are cleared after direct write (test 355)
– Richacls (362)
– Encryption support (395)
– Timestamp bounds unknown (402)
– chattr +d (“nodump”) (424)
– Information about fiemap of attribute fork (425)
– NFS export (open by inode #) (426)
– Backslash in name (“Key urk moo does not exist for ��

FAKESLASH test??” in test 453)

More details (continued)

– Conflicting xattrs (test 454)
– XATTR_REPLACE (test 486)
– xfs_io label (492)
– Lsattr -d (508)
– Xattrs with slashes in name (523)
– Casefolding support (556)
– Dupremove utility (559), actton utility (596)
– Fsverity (571)

Next Steps

– Remember we can prototype to ksmbd as well now …
and experiment ...

Thank you for your time

● A very exciting time for ...

S
M
B
3
.
1
.
1

+

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

