
The Road to the New VFS

Ralph Böhme, Samba Team, SerNet

2021-05-06

mailto:slow@samba.org


Road to a modern VFS for SMB2+



The Road to a modern VFS for SMB2+

The effort to modernize Samba’s VFS interface has reached a major milestone
with the release of Samba 4.14:

• This is an ongoing effort since a few years
• Initially driven by Jeremy Allison

• standardizing path based filesystem syscalls on *at() variants
• eg openat() instead of open()

We recently changed the fileserver code to use file handles instead of paths as
often as possible

• eg fstat() instead of stat()

How did we get there?

1/18



Some History

SMB1 Fallacies: Pervasive use of Paths
A path by any other name would smell as unpleasing.

Most metadata operation (get and set) in SMB1 can be done on paths:

• Path processing is complex and slow
• one of the core function unix_convert() had more then 800 lines

(before we refactored it last year)
• plus several thousand lines of code in callees

So what’s wrong with paths. Things to consider:

• Charset conversion

• Mangling non-Windows compatible paths to Windows compatible

• DFS paths

• Previous version paths (with "@GMT-. . . " tokens in the path)

• Case insensitive semantics

• Named streams support

• Yuck!

2/18



Enter SMB2

By contrast, SMB2+ is a purely handle based protocol

• SMB2 Create request takes a pathname

• Everything else operates on a handle returned by SMB2 Create

• . . . with a few exceptions:
• QueryInfo(NormalizedNameInformation) returns a full pathname
• QueryDirectory() returns relative pathnames
• SetInfo(File{Link,Rename}Information) takes a full target pathname

Deprecation of SMB1 in 4.11

• The world has moved away from SMB1

• So did we, SMB1 is now disabled by default

• Not yet removed completely: used in tests

3/18



The Idea

The idea: a (mostly) handle-based VFS for the SMB2+ World

• Streamline the VFS interface to be (mostly) handle-based
• No more SMB_VFS_STAT(), only SMB_VFS_FSTAT()

• or SMB_VFS_FGETXATTR(), not SMB_VFS_GETXATTR()
• or SMB_VFS_FGET_DOS_ATTRIBUTES(), not SMB_VFS_GET_DOS_ATTRIBUTES()
• or SMB_VFS_FGET_NT_ACL, not SMB_VFS_GET_NT_ACL()
• . . . and so on

• Perfect match for the SMB2+ protocol

4/18



VFS Functions by Category

VFS Function Categories Number
Path based 21
Path based namespace changing (create, delete, . . . ) 8
Handle based 50
DFS-related 3
Disk operations 9
Pure path to path translation 4
Special cases (eg FileIDs) 6
Sum 101

Table 1: VFS interface functions grouped by category

5/18



The Design Squad

The Design Squad

Stefan Metzmacher
Volker Lendecke
Jeremy Allison
Ralph Böhme

6/18



Challenge: Permissions

Opening a file handle requires at least O_RDONLY

• If you want a file handle on Linux, you call open[at](file, mode)

• You request an access mode of either O_RDONLY, O_WRONLY or O_RDWR

• path based stat("file") only needs only "x" on parent directory, but . . .

• fd = open("file", O_RDONLY) in oder to fstat(fd) needs "r" on "file"

• Currently if the client only requests READ_ATTRIBUTES access
• which is the access right corresponding to reading a file’s metadata (ie stat())
• then Samba doesn’t open a file handle but uses path based syscall (ie stat())

Kernel oplocks

• O_RDONLY triggers a kernel oplock break

7/18



Uh-oh!

8/18



Oh path, oh path!

Oh path, oh path!

The fix: Linux open() flag O_PATH

• Available since since Linux 2.6.39 (May 2011), soon in FreeBSD
• Returns a file handle that acts as a mere path "reference"

• I coined the term pathref for referring to these guys in Samba

• Doesn’t need "r" on object, only "x" on the parent directory

Limitted number of syscalls are allowed

• the important one from Samba’s perspective: fstat()

• Can read the inode metadata but not modify it

• Can’t be used for any sort of IO

• Can also be used as dirfd for *at() syscalls

Fallback to open-as-root if O_PATH is not available

• root-opened fds are "guarded", access only via accessor functions
• fsp_get_pathref_fd(fsp), fsp_get_io_fd(fsp)
• fsp_get_pathref_fd(fsp) must be auditted

9/18



Oh path, oh path! Cont.

But wait, Samba needs more then fstat():

• Samba needs to read ACLs and xattrs

• But both can’t be retrieved via O_PATH handles
• Use the /proc/self/fd/FD trick:

• use path based version with path "/proc/self/fd/%d"
• replacing %d with the O_PATH fd

Example Code: Fallback to getxattr

if (somehow_figure_out_fd_is_opath_fd(fd)) {
char buf[PATH_MAX];
sprintf(buf, "/proc/self/fd/%d", fd);
getxattr(buf, ...);

} else {
fgetxattr(fd, ...);

}

Fine Print

• /proc/self/fd currently Linux only, elsewhere fallback to path based access

• Which is the same net result as in pre O_PATH Samba

10/18



Challenge: SMB1 Heritage

Due to paths being used heavily in the protocol we have pervasive use of paths
in the Samba codebase

• we want to convert 21 path based VFS functions, . . .

• that are used at a few hundred places in the codebase and . . .

• will we need a file handle in all those places

Samba high-level code "degrades" handles to path-based access in many places

• So in theory we have a handle (fsp in Samba parlance)

• But use path attached to fsp (fsp->fsp_name) with path based VFS function

• Or need to call a VFS function on the parent directory of fsp->fsp_name

• Sometimes paths get passed to functions, not a handle – even though we have one

11/18



SMB1 Heritage: Turning pathnames into pathrefs

How to get a file handle? The old way

Samba’s internal file handle structure is of type struct files_struct and all variable
pointing to objects of such type are typically called fsp’s.

• fsp’s are returned by SMB_VFS_CREATE_FILE()

• this is the 1000 pounds Gorilla of the VFS functions zoo

• calls on to SMB_VFS_OPENAT() to open the low-level fd

• then goes through Samba’s NTFS Windows emulation (eg locking.tdb)

New, additional way to get a file handle

We added new helper function openat_pathref_fsp() which skips the NTFS
emulation logic and calls SMB_VFS_OPENAT() with O_PATH

• I called the resulting fsp’s pathref fsps
• pathref fsps can be upgraded to "full" fsps

• fd is reopened
• NTFS Windows emulation code is run
• This happens when passing a pathref fsp to SMB_VFS_CREATE_FILE()

• embedded in the filename that gets passed to SMB_VFS_CREATE_FILE() (see next slide)

12/18



SMB1 Heritage, cont.

Client supplied paths are processed by the core function filename_convert()

• Returs a pointer to an object of type struct smb_filename.
• Variables are typically called smb_fname.

• filename_convert() is updated to call openat_pathref_fsp()
• storing the resulting pathref fsp inside struct smb_filename

• smb_fname->fsp

• As a result the whole codebase has immediate access to a file handle.

• Which allows converting the whole codebase to use handle based VFS functions
in a piecemeal fashion.

13/18



VFS Functions by Category, todo

VFS Function Categories Number Todo
Path based 21 Use O_PATH pathrefs
Path based namespace changing (create, delete, . . . ) 8 -
Handle based but not allowed on O_PATH fds 8 Use /proc/fd
Handle based 42 -
DFS-related 3 -
Disk operations 9 -
Pure path to path translation 4 -
Special cases (eg FileIDs) 6 -
Sum todo 29

Table 2: VFS interface functions by category needing changes

14/18



The Construction Squad

Construction Squad

Noel Power
Samuel Cabrero
Jeremy Allison
Ralph Böhme

15/18



VFS Conversion Status

Status

VFS Function Category Done Todo
Path based 6 15
Handle based but not allowed on O_PATH 8 0

Table 3: VFS Conversion Status

16/18



Links

• https://wiki.samba.org/index.php/The_New_VFS

• The New VFS, long version of this presentation in the Samba sources

17/18

https://wiki.samba.org/index.php/The_New_VFS
https://git.samba.org/?p=samba.git;a=blob;f=source3/modules/The_New_VFS.txt;h=51e7d347a16bda2ea012d3489680d6fa0ee62dce;hb=refs/heads/master


Q&A

Thank you!
Questions?

Ralph Böhme
slow@samba.org
rb@sernet.de

18/18


	Road to a modern VFS for SMB2+

