
Copyright © SUSE 2021

Reverse engineering the
Windows SMB server

2 0 AP R I L 2 0 2 1

Aurélien Aptel <aaptel@suse.com>

Copyright © SUSE 2021

“Reverse engineering is taking apart an object to see how it works in order to duplicate or

enhance the object.”

— Why?

– Dump cryptographic keys generated by the SMB server used for encryption

– Fun?

— Useful for:

– Debugging while implementing SMB encryption

– Decrypting a network capture in Wireshark

2

Reverse engineering the Windows SMB server

Copyright © SUSE 2021

— Windows kernel, differences and comparaison with Linux kernel

— Finding the code for the SMB server

— WinDbg and Windows kernel debugging

— Disassemblers and static analysis tools, IDA pro

— When and where the SMB server generates keys

— Ways to automaticaly dump the key as it gets generated

— Summary of the implemented solution

— Final words

3

Plan

Copyright © SUSE 2021

If you are only interested in the decrypted traffic and not the keys: this is already possible

(thx Obaid!)

— On client

– netsh trace start provider=Microsoft-Windows-SMBClient capture=yes

— On server

– netsh trace start provider= Microsoft-Windows-SMBServer capture=yes

— To stop trace and generate the .etl file

– netsh trace stop

— To convert ETL to pcap https://github.com/microsoft/etl2pcapng

— https://channel9.msdn.com/events/Open-Specifications-Plugfests/Redmond-Interoperability-

Protocols-Plugfest-2015/Decrypting-SMB3-Protocol

4

Dumping SMB traffic pre-encryption

https://github.com/microsoft/etl2pcapng
https://channel9.msdn.com/events/Open-Specifications-Plugfests/Redmond-Interoperability-Protocols-Plugfest-2015/Decrypting-SMB3-Protocol

Copyright © SUSE 2021

SMB server is implemented as kernel modules (drivers in

Windows jargon)

5

Overview of the Windows SMB server

Copyright © SUSE 2021

— Most drivers are stored in %SystemRoot%\system32\drivers\

— Drivers use the .sys extension

— Use the PE file header

– Same as .exe or .dll

6

Overview of the Windows SMB server

Copyright © SUSE 2021 7

Overview of the Windows SMB server

Kernel modules Windows Linux

Location C:\Windows\System32\drivers /lib/modules/$version/

Extension .sys .ko

File format PE ELF

Copyright © SUSE 2021 8

Overview of the Windows SMB server

— Where is the server?

— First attempt: look for "smb2" occurrences in all the drivers

— mrxsmb* : SMB redirectors (client)

— srv* : SMB server!

$ strings --print-file-name -n 8 *.sys | grep -i smb2
mrxsmb20.sys: ...
mrxsmb.sys: ...
srv2.sys: ...
srvnet.sys: ...

Copyright © SUSE 2021

The SMB server implementation seems to be done in mainly 3 drivers

9

Overview of the Windows SMB server

srv.sys
SMB1

srv2.sys
SMB2+

srvnet.sys

Copyright © SUSE 2021

Microsoft has an official stand-alone debugger called WinDbg

— Userspace debugging

— Remote debugging (kernel or userspace)

— Rudimentary GUI with a command-line interface

– Pure Text also possible (cdb, kd)

— Incompatible with GDB

— WinDbg "Preview"

– More modern GUI wrapper

10

Debugger

Copyright © SUSE 2021

Microsoft has an official stand-alone debugger called WinDbg

— Userspace debugging

— Remote debugging (kernel or userspace)

— Rudimentary GUI with a command-line interface

– Pure Text also possible (cdb, kd)

— Incompatible with GDB

– Questionable choices of command syntax :)

— WinDbg "Preview"

– More modern GUI wrapper

11

Debugger

Copyright © SUSE 2021

"Aaron's shitty windbg cheat sheet" from https://dblohm7.ca/pmo/windbgcheatsheet.html

12

Debugger

https://dblohm7.ca/pmo/windbgcheatsheet.html

Copyright © SUSE 2021

How to debug the kernel?

— Dual machine setup

– Host is running WinDbg, waiting for connections

– Debugged target (VM for me) is configured for remote debugging, connects to host

– https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-network-debugging-

connection-automatically

— Note: target requires a supported NIC! Pick virtual NIC model carefully...

– Silently fails with qemu virtio NIC... Even qemu intel E100... :(

13

Debugger

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-a-network-debugging-connection-automatically

Copyright © SUSE 2021

How to debug the kernel?

— Setting up the target: install the debugging tools then

— In remote network debugging, host creates a debug TCP server, target connects to it

– Similar to FTP active mode (kind of backward)

— Special debug boot mode enabled by default

– Can list boot config with bcdedit /dbgsettings

— Reboot

14

Debugger

>kdnet.exe <HostComputerIPAddress> <YourDebugPort>
Enabling network debugging on Intel(R) 82577LM Gigabit Network Connection.
Key=2steg4fzbj2sz.23418vzkd4ko3.1g34ou07z4pev.1sp3yo9yz874p

Copyright © SUSE 2021

— Setting up the host

– Just start WinDbg with the Key and Port from the target (command line or GUI)

15

Debugger

Copyright © SUSE 2021

— Survival guide edition

16

Debugger

.reload Refresh loaded symbols

lm List loaded kernel modules

x srv2!*key* List symbols containing 'key' in the srv2 module

db expr
dd expr
dq expr

Hexdump of "expr", displayed as bytes (b), double word (d,
32bits), quad (q, 64bits)

p
t

Step over
Step into (for call instructions)

bp expr
g

Set breakpoint on expr (addr, symbol, symbol+addr, …)
Continue

Copyright © SUSE 2021

— Tools to look around binary files

– Import tables, export tables, disassembly, decompilation, xref, list strings, etc

— Most popular ones

– IDA Pro: industry leader, closed source, expensive (but free & demo versions available)

– Ghidra: recent, developed by the NSA, open source

– Radare2: open source, Linux only, command-line

– x64dbg: open source, Windows only

– OllyDbg: freeware, Windows only, popular but old

17

Disassembler/Static analysis

Copyright © SUSE 2021 18

srv2.sys in IDA

Copyright © SUSE 2021

— Graph view

19

Srv2.sys in IDA

Copyright © SUSE 2021 20

Decompiling a function in IDA

Copyright © SUSE 2021

— Certain objects can be deducted from looking at function

names

– Reference and Dereference funcs are used to keep track

of reference counts (inc/dec)

– They all must take the object pointer as parameter

– We can figure out the offset and size of the refcount

field from them

— By iteratively annotating the prototype of the functions, the IDA

decompiler can deduct and propagate more types, intermediary

variable, and new func prototypes

21

Deducting types and objects

Copyright © SUSE 2021

— Similarly, allocation functions gives us object sizes

22

Deducting types and objects

Copyright © SUSE 2021

— After looking around some more, the code path we are interested in is:

23

Key generation

srv2.Smb2ExecuteSessionSetupReal() {
srv2.Srv2CreateAndRegisterCipherKeys() {

srvnet.SmbCryptoCreateServerCipherKeys() {
srvnet.SmbCryptoCreateCipherKeys() {

// key derivation and generation via BCrypt API
BCryptGenerateSymmetricKey()
// return opaque BCrypt handles containing the
// keys

}
}

}
}

Copyright © SUSE 2021

— BCrypt?

– Standard, documented, Windows crypto API

– https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/

24

Key generation

NTSTATUS BCryptGenerateSymmetricKey(
BCRYPT_ALG_HANDLE hAlgorithm,
BCRYPT_KEY_HANDLE *phKey, <====== generated key!
PUCHAR pbKeyObject,
ULONG cbKeyObject,
PUCHAR pbSecret,
ULONG cbSecret,
ULONG dwFlags

);

https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/

Copyright © SUSE 2021

– BCRYPT_KEY_HANDLE is an opaque pointer type though...

– We are looking for an AES-128 key

– 128 bits = 16 bytes

– The plan is now to

– Put a breakpoint in the server after the keys are generated

– Connect Samba smbclient to the debugged server

– Dump smbclient client key (via an existing command line argument)

– In the debugger, inspect the memory of the BCRYPT_KEY_HANDLE

25

Key generation

Copyright © SUSE 2021

— BCRYPT_KEY_HANDLE is a void pointer, we don't know the struct content or size

– How to tell plain data apart from addresses?

– Kernel memory lives on the high end of memory

– All addresses will start 0xfffff....

— Plan is now to inspect memory at the handle, and recursively repeat for things that look like addresses

– X86_64 systems have 8 bytes addresses

– Use dq in WinDbg to dump data as 8 bytes ints (will reverse the bytes on little endian)

— Fortunately, the key bytes are found relatively quickly at

aeskey = (uint8_t*)(*(uint64*)(*key_handle)) + 92;

26

Finding the key in the BCrypt handle

Copyright © SUSE 2021

aeskey = (uint8_t*)(*(uint64*)(*key_handle)) + 92;

— Essentially:

— struct BCRYPT_KEY {

struct substruct {

// 92 bytes of data here

uint8_t aes128key[16];

} *ptr;

// more data here

};

27

Finding the key in the BCrypt handle

Copyright © SUSE 2021

— Now that we know when and where the key is stored, how can we automate it?

— Solution A: Patching srv2.sys

– Will fail code signing

– Tricky to add additional functions imports if we want to use simple file io API

– Needs to be re-figured out for every build of srv2.sys

28

Automating key dumping

Copyright © SUSE 2021

— Solution B: Writing a new driver that patches srv2.sys in memory

– We can self-sign it

– Using any API is easy

– We can hook our dumping code at the exact right spot

– Still need to re-figure offsets and such for every build of srv2.sys

29

Automating key dumping

Copyright © SUSE 2021

— Now that we know when and where the key is stored, how

can we automate it?

— Solution C: Writing a new driver that hooks into srv2.sys

imports

– srv2 calls into the srvnet module

– srvnet exported functions are less likely to change

prototypes often

30

Automating key dumping

srv2

Srvnet
SmbCryptoCreateCipherKeys

Our dumping
code

srv2.Smb2ExecuteSessionSetupReal() {
srv2.Srv2CreateAndRegisterCipherKeys() {

srvnet.SmbCryptoCreateServerCipherKeys() {
srvnet.SmbCryptoCreateCipherKeys() {

// key derivation and generation via BCrypt API
BCryptGenerateSymmetricKey()
// return opaque BCrypt handles containing the
// keys

}
}

}
}

Copyright © SUSE 2021

— PE files can export symbols (libs) and import symbols (extern calls)

— The PE header has an Import and Export table section

(PLT, Procedure Linkage Table)

— Those tables list the symbol name (ascii string) and the address where that

function can be called

— Addresses are zeroes on disk, but once loaded in memory, the linker mixes

and matches imports with exports from the modules already loaded

31

Refresher on loading

Copyright © SUSE 2021 32

Refresher on loading

a.sys (about to be loaded)

Imports:
- func_in_b, 0x????????

Exports:
- (nothing)

Code:

call import_table[func_in_b]

b.sys (loaded at 'base')

Imports:
- (nothing)

Exports:
- func_in_b, base+0x123

Code:

func_in_b: (offset 0x123)
mov eax, 42
ret

Copyright © SUSE 2021 33

Refresher on loading

a.sys (about to be loaded)

Imports:
- func_in_b, base+0x123

Exports:
- (nothing)

Code:

call import_table[func_in_b]

b.sys (loaded at 'base')

Imports:
- (nothing)

Exports:
- func_in_b, base+0x123

Code:

func_in_b: (offset 0x123)
mov eax, 42
ret

Copyright © SUSE 2021 34

Refresher on loading: hooking

a.sys

Imports:
- func_in_b, base+0x123

Exports:
- (nothing)

Code:

call import_table[func_in_b]

b.sys (loaded at 'base')

Imports:
- (nothing)

Exports:
- func_in_b, base+0x123

Code:

func_in_b: (offset 0x123)
mov eax, 42
ret

hook.sys

Imports:
- (nothing)

Exports:
- hook_func_in_b, hook+0x456

Code:

hook_func_in_b: (offset 0x456)
call real_func_in_b
inc eax
ret

Copyright © SUSE 2021 35

Refresher on loading: hooking

a.sys

Imports:
- func_in_b, base+0x123

Exports:
- (nothing)

Code:

call import_table[func_in_b]

b.sys (loaded at 'base')

Imports:
- (nothing)

Exports:
- func_in_b, base+0x123

Code:

func_in_b: (offset 0x123)
mov eax, 42
ret

hook.sys

Imports:
- (nothing)

Exports:
- hook_func_in_b, hook+0x456

Code:

hook_func_in_b: (offset 0x456)
call real_func_in_b (base+0x123)

inc eax
ret

1. Set real_func_in_b variable to the
func_in_b import

Copyright © SUSE 2021 36

Refresher on loading: hooking

a.sys

Imports:
- func_in_b, hook+0x456

Exports:
- (nothing)

Code:

call import_table[func_in_b]

b.sys (loaded at 'base')

Imports:
- (nothing)

Exports:
- func_in_b, base+0x123

Code:

func_in_b: (offset 0x123)
mov eax, 42
ret

hook.sys

Imports:
- (nothing)

Exports:
- hook_func_in_b, hook+0x456

Code:

hook_func_in_b: (offset 0x456)
call real_func_in_b (base+0x123)

inc eax
ret

2. overwrite a.sys func_in_b import to the hook

Copyright © SUSE 2021 37

Refresher on loading: hooking

a.sys

Imports:
- func_in_b, hook+0x456

Exports:
- (nothing)

Code:

call import_table[func_in_b]

b.sys (loaded at 'base')

Imports:
- (nothing)

Exports:
- func_in_b, base+0x123

Code:

func_in_b: (offset 0x123)
mov eax, 42
ret

hook.sys

Imports:
- (nothing)

Exports:
- hook_func_in_b, hook+0x456

Code:

hook_func_in_b: (offset 0x456)
call real_func_in_b (base+0x123)

inc eax
ret

Copyright © SUSE 2021 38

Refresher on loading: hooking

a.sys

Imports:
- func_in_b, hook+0x456

Exports:
- (nothing)

Code:

call import_table[func_in_b]

b.sys (loaded at 'base')

Imports:
- (nothing)

Exports:
- func_in_b, base+0x123

Code:

func_in_b: (offset 0x123)
mov eax, 42
ret

hook.sys

Imports:
- (nothing)

Exports:
- hook_func_in_b, hook+0x456

Code:

hook_func_in_b: (offset 0x456)
call real_func_in_b (base+0x123)

inc eax
ret

Copyright © SUSE 2021 39

Refresher on loading: hooking

a.sys

Imports:
- func_in_b, hook+0x456

Exports:
- (nothing)

Code:

call import_table[func_in_b]

b.sys (loaded at 'base')

Imports:
- (nothing)

Exports:
- func_in_b, base+0x123

Code:

func_in_b: (offset 0x123)
mov eax, 42
ret

hook.sys

Imports:
- (nothing)

Exports:
- hook_func_in_b, hook+0x456

Code:

hook_func_in_b: (offset 0x456)
call real_func_in_b (base+0x123)

inc eax
ret

Copyright © SUSE 2021 40

Refresher on loading: hooking

a.sys

Imports:
- func_in_b, hook+0x456

Exports:
- (nothing)

Code:

call import_table[func_in_b]

b.sys (loaded at 'base')

Imports:
- (nothing)

Exports:
- func_in_b, base+0x123

Code:

func_in_b: (offset 0x123)
mov eax, 42
ret

hook.sys

Imports:
- (nothing)

Exports:
- hook_func_in_b, hook+0x456

Code:

hook_func_in_b: (offset 0x456)
call real_func_in_b (base+0x123)

inc eax
ret

Copyright © SUSE 2021 41

Refresher on loading: hooking

a.sys

Imports:
- func_in_b, hook+0x456

Exports:
- (nothing)

Code:

call import_table[func_in_b]

b.sys (loaded at 'base')

Imports:
- (nothing)

Exports:
- func_in_b, base+0x123

Code:

func_in_b: (offset 0x123)
mov eax, 42
ret

hook.sys

Imports:
- (nothing)

Exports:
- hook_func_in_b, hook+0x456

Code:

hook_func_in_b: (offset 0x456)
call real_func_in_b (base+0x123)

inc eax
ret

Copyright © SUSE 2021 42

Refresher on loading: hooking

a.sys

Imports:
- func_in_b, hook+0x456

Exports:
- (nothing)

Code:

call import_table[func_in_b]

b.sys (loaded at 'base')

Imports:
- (nothing)

Exports:
- func_in_b, base+0x123

Code:

func_in_b: (offset 0x123)
mov eax, 42
ret

hook.sys

Imports:
- (nothing)

Exports:
- hook_func_in_b, hook+0x456

Code:

hook_func_in_b: (offset 0x456)
call real_func_in_b (base+0x123)

inc eax
ret

Copyright © SUSE 2021

— Visual Studio, following Microsoft documentation

— Kernel mode driver

— On load

– Find srv2.sys module base address in memory

– Look for SmbCryptoCreateServerCipherKeys entry in import table

– Copy the func address (real func)

– Overwrite the entry with our function address

— On unload

– Restore srv2 import table addresses

— Hook function print keys to a file C:\SMBKeyDumpLog.txt

43

Implementing the driver

Copyright © SUSE 2021

— 2 functions needed to be hooked

– SmbCryptoCreateServerCipherKeys to access encryption&decryption

keys

– But also SmbCryptoKeyTableInsert to access the Session ID as one of the

parameters

44

Implementing the driver

Copyright © SUSE 2021

— Many issues:

– No API to find module base address

– Use undocumented call to get the address of kernel module array list

– Loop over module and look for one with a srv2.sys name attribute

– Cannot write in read-only memory (import table)

– Use MmMapLockedPagesSpecifyCache()

and MmProtectMdlSystemAddress() to change read/write permissions on

the pages the import table is.

– Number and size of arguments of hooked functions

– Windows x64 "fastcall" ABI

– https://docs.microsoft.com/en-us/cpp/build/x64-calling-

convention?view=msvc-160#parameter-passing

45

Implementing the driver

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160

Copyright © SUSE 2021

— Many issues:

– Tried issuing my own certificate and self-sign but impossible to get it to work

– Need to boot in signing debug mode to load it

– Windows doesn't have simple insmod/rmmod to load/unload kernel modules

– Tried understanding driver .inf file but couldn't figure it out

– Used OSR Loader

– Point it at .sys file, click load/unload buttons

– https://www.osronline.com/article.cfm%5Earticle=157.htm

46

Implementing the driver

https://www.osronline.com/article.cfm%5Earticle=157.htm

Copyright © SUSE 2021

— Dumping & decrypting

47

Live demo

Copyright © SUSE 2021

— Code for the driver on github https://github.com/aaptel/SMBKeyDump

– Only tested with a Win10 VM

— Thanks to people on reddit reverse engineering discord server

— The module list trick

– http://alter.org.ua/docs/nt_kernel/procaddr/

— VirtualKD source code for changing page mode bits

– https://github.com/4d61726b/VirtualKD-Redux

48

Final words, credits, questions

https://github.com/aaptel/SMBKeyDump
http://alter.org.ua/docs/nt_kernel/procaddr/

Copyright © SUSE 2021

© 2020 SUSE LLC. All Rights Reserved. SUSE and the
SUSE logo are registered trademarks of SUSE LLC in the
United States and other countries. All third-party
trademarks are the property of their respective
owners.

For more information, contact SUSE at:

+1 800 796 3700 (U.S./Canada)

+49 (0)911-740 53-0 (Worldwide)

Maxfeldstrasse 5

90409 Nuremberg

www.suse.comThank you

