
Windows Search
Protocol recap &

update

Noel Power
noel.power@suse.com

Agenda
●Windows Search Protocol recap
●WSP server implementation
–Recap
–Implementation problems

–Solutions
●What’s new
Where to find it

Overview
“Windows Search is a desktop search platform
that has instant search capabilities for most
common file and data types such as email,
contacts, calendar appointments, documents,
photos, multimedia etc. These capabilities enable
users to find, manage, and organize the increasing
amount of data common in home and enterprise
environments.” - MSDN

Windows Search Service (WSS)
●Builds an index (from a selected location(s)) of a
collection of documents by
–Analyzing files
–Extracting content, properties & meta data

●Maintains a single index shared by all users
●Maintains security restrictions on content access
Process remote queries from client computers on

Windows Search Protocol
●Allows a client to issue queries to a server
hosting the Windows Search service.
●The protocol is primarily intended to be used for
full-text queries.

●Uses SMB pipe protocol
●Has a dedicated pipe \pipe\MSFTEWDS
allocated for this protocol

WSP server implementation
●Configured as a samba external daemon
●Uses IDL to represent the structures used in the
messages defined by the protocol
●Receives WSP queries from a client and converts
them into gnome-tracker queries, calls gnome-
tracker and converts the results to be passed back
to the client

Server Implementation – some problems

Server Implementation – some problems
●Row/Cursor navigation

Server Implementation – some problems
●Row/Cursor navigation
●Row filtering

Server Implementation – some problems
●Row/Cursor navigation
●Row filtering
●Missing Restriction/Property support

Server Implementation – some problems
●Row/Cursor navigation
●Row filtering
●Missing Restriction/Property support
●Testability and lack of client

Server Implementation – some problems
●Row/Cursor navigation
●Row filtering
●Missing Restriction/Property support
●Testability and lack of client support

●Tracker integration

Row/Cursor navigation
●Problem
–Semantics of WSP protocol demand rows
returned for a query are navigable with a cursor.

–With a GUI for example that cursor is more or
less random access as you can scroll anywhere in
a list of results.

–Tracker only offers a cursor than can only be
iterated forward (with the ability to be rewound

Row filtering
●Problem(s)
–WSP protocol doc stipulates that when returning
results you need to filter out results such that
every row returned by the GSS MUST be ACL
checked and rows that don't have file system
access to the file must be dropped.

–Global tracker service which needs of course to
be able to access the files in order to index them.

Row filtering
●Solution
–All rows to be cached returned from tracker are
filtered.

–Filtering done by attempting to open the file (as
authenticated user of wsp pipe) for reading,
failure open results in row being dropped
●Large results from the query incur performance
penalties due the fact the entire result set needs

Missing Restriction/Property Support
●Problem
–There are many properties that exist for
files/objects, the protocol document only
mentions a subset of them. We only support a
subset of that subset mentioned in the protocol
document.

–Mapping of properties can be problematic
Missing properties are dropped

Missing Restriction/Property Support
●Solution
–Support for some more properties added
–Improved logic around best effort query
generation

–Per share enable/disable of WSP to allow
piecemeal integration

Testability and lack of client support
●Problem
–No easy way to test the linux wsp daemon except
via windows client
●Windows client is

–noisy
–creates complex querys
Hard to focus on specific properties

Testability and lack of client support
●Solution
–Create a simple cmdline client!

Ways to specify query
●Advance Query Syntax (AQS)
–“search phrase(s)" AND System.Author:(npower
OR noel) AND
System.ItemFolderNameDisplay:C:”\MyDocs”

●Windows Search SQL
–"SELECT Path FROM UserA-
4.SystemIndex.Scope() WHERE "SCOPE"=
'file://UserA-4/Users/UserA/Pictures' AND

WSPSEARCH query syntax
●Chose to support Advanced Query Syntax (AQS)
or more correctly AQS-like syntax in the cli client
because;
–AQS was best documented see
https://msdn.microsoft.com/en-
us/library/windows/desktop/bb266512(v=vs.85).
aspx#scope

–Texually brief

Restriction Description Supported
CNodeRestriction An array of command tree restriction nodes for constraining the results of a

query
Y

CContentRestriction Contains a word or phrase to match for a specific property Y

CPropertyRestriction Contains a property to get from each row, a comparison operator and a constant Y

CNatLanguageRestriction Contains a natural language query match for a property. Natural language
simply means that the string has no formal meaning. The GSS is free to match on
the string in a variety of ways. It can drop words, add alternate forms, or make
no changes.

Y

CReusewhere The restriction packet contains a WHEREID that refers to the restriction array
used to construct a currently open query

Y

CCoercionRestriction Contains the modifier and rank coercion operation N

CProbRestriction Contains parameters for probabilistic ranking. N

CVectorRestriction Contains a weighted OR operation over restriction nodes. Vector restrictions
represent queries using the full text vector space model of ranking (see
[SALTON] for details).

N

CScopeRestriction Restricts the files to be returned to those with a path that matches the restriction N

CInternalPropertyRestriction Contains a property value to match with an operation. N

CFeedbackRestriction Contains the number of relevant documents and a property specification for a
relevance feedback query.

N

CRelDocRestriction Contains a relevant document ID. N

●How do we deal with selecting columns to be
returned with the query
–New optional ‘SELECT’ statement
●Example “SELECT System.ItemName,
System.ItemURL, System.Size WHERE
ALL:$<p403 OR ALL:$<p404 AND
System.Kind:picture AND
Scope:"FILE://somemachine/someshare”

WSPSEARCH query syntax

Enum Keyword
System.ItemDate:System.StructuredQueryType.DateTime#Today today
System.ItemDate:System.StructuredQueryType.DateTime#Yesterday yesterday
System.Size#Empty empty
System.Size#Tiny tiny

WSPSEARCH
●Simple command line tool to search remote
server using WSP
–Search for different types e.g.
[Calendar|Communication|Contact|Document|Em
ail|Feed|Folder|Game|InstantMessage|Journal|Lin
k|Movie|Music|Note|Picture|Program|RecordedT
V|SearchFolder|Task|Video|WebHistory]
wspsearch -U$(USER)%$(PASSWD) –

Tracker integration
•The Problem
•Tracker is accessed via a glib library; how can we
call asynchronous glib api(s) within a tevent
based application. To use such api(s) we need to
hand over control to the glib main event loop
while we wait for a response. We can't of course
do that if the application already has and
continues to need to hand off to a different main

Event loop integration: Parallel
●Advantages
–Level of separation is easy to define
●Child process
●Thread

●Stand alone process
●Disadvantages
You need to manage the child process, thread or

Event loop integration: Master/Slave
●Advantages
–Seamless ability to call either asynchronous api
from either tevent or glib api(s)

–No need for bridge code

–No need to manage other resources
●Disadvantages
–Complexity, can be hard to get right, we need to

GMainContext

https://developer.gnome.org/glib/2.52/mainloop-states.gif

Glueing it all together

Whats new then
●wspsearch – a command-line client to allow
dynamic queries to be specified and run against
remote servers
●Wireshark dissector – since Wireshark version
1.99.9 Be careful!! this got broken soon after I
only noticed that recently so you need to run at
least version 2.2.4
64 bit mode support – some messages (such as

How to Help
●The most important!!, please help get this
upstream by
–Review
–Testing

–Download the code (details to follow)
●Fix my dodgy code!!
Add more functionality e.g.

Where can I find the code?
●WSP-WIP
–This is the most up to date branch, it contains all
the changes, it has both client and server
implementation code.

●https://github.com/noelpower/samba/tree/WSP-
WIP

●WSP-WIP-NO_RAWPIPE

How do I test it out?
●Option 1:
–Follow Ralphs steps for setting up Tracker for
spotlight, you need to do exactly the same as
described here
https://wiki.samba.org/index.php/Spotlight#Setup
.
●Option 2:
SUSE only systems:

●Option 2: (contd.)
–Enable the services

–systemctl enable system-tracker-store
–systemctl enable system-tracker-extract

–systemctl enable system-tracker-miner-fs
–Start the services

systemctl enable system-tracker-miner-fs

How do I test it out?

Questions?

