
DFS Replication
A client implementation for Samba

Samuel Cabrero

SUSE Labs Samba team

scabrero@suse.com

2

Agenda

1. Introduction

2. DFS-R Configuration

3. Protocol overview
1. Retrieving updates

2. Processing updates

3. Installing updates

4. Demo

5. Next steps

3

Introduction

4

Overview

● DFS-R is a RPC protocol that replicates files between servers

● It is a optimistic and multi-master protocol
● Optimistic → Files can be updated without prior consensus

● Multi-master → Files can be changed in any server.

● Asynchronous, no restrictions on when the changes must be
propagated

● Files are replicated when the application that modifies them closes
the file

● When a file is closed, an update is generated and inserted in a
database

5

DFS-R configuration

6

Concepts

● Replication Groups or replica sets

● Replicated folders or content sets

● Computers are members of replication groups

● Members subscribe to replicated folders

● Topology, which define the connections between members, is
common to the group

● Configuration is stored in AD
● Global configuration

● Local configuration

CN=DFSR-GlobalSettings,CN=System,DC=samba1,DC=ad
CN=SambaXP_TestGroup <= msDFSR-ReplicationGroup

CN=Content <= msDFSR-Content
CN=SambaXP_TestFolder1 <= msDFSR-ContentSet
CN=SambaXP_TestFolder2 <= msDFSR-ContentSet

CN=Topology <= msDFSR-Topology
CN=bc7d1b34-bdac-48e3-9a86-225bcfcc96d7 <= msDFSR-Member

CN=d7579220-73c3-4c00-b479-347c29576e90 <= msDFSR-Connection
CN=2d13008d-d7f7-47d8-b7df-5ae90c617cf4 <= msDFSR-Member

CN=b9c16269-1136-49d2-85cc-2cb75114d14c <= msDFSR-Connection

CN=DFSR-LocalSettings,CN=WIN2K12R2-2,CN=Computers,DC=samba1,DC=ad
CN=bc7d1b34-bdac-48e3-9a86-225bcfcc96d7 <= msDFSR-Subscriber

CN=18b1586c-232b-4459-98b3-390939c96b8c <= msDFSR-Subscription
CN=9fdb9b8c-f88e-4438-b689-14a06bbe5c1a <= msDFSR-Subscription

7

The SYSVOL replication group

● It is a special replication group

● Replication topology follows nTDSConnection from Configuration
partition (AD replication)

CN=DFSR-GlobalSettings,CN=System,DC=samba1,DC=ad
CN=Domain System Volume
msDFSR-ReplicationGroupType: 1

CN=SambaXP_TestGroup
msDFSR-ReplicationGroupType: 0

8

Management

● PowerShell
● {New,Get,Set,Remove}-DfsReplicationGroup

● {New,Get,Set,Remove}-DfsReplicatedFolder

● {Add,Get,Set,Remove}-DfsrMember

● {Get,Set}-DfsrMembership

● {Add,Get,Set,Remove}-DfsrConnection

● samba-tool
● samba-tool dfsr group {list,create,edit,delete}

● samba-tool dfsr folder {list,create,edit,delete}

● samba-tool dfsr member {list,add,delete}

● samba-tool dfsr subscription {list,add,delete}

● samba-tool dfsr connection {list,create,edit,delete}

9

Protocol overview

10

Overview

● The protocol takes a three tiered approach
● The client determine which versions is missing

● Asking for the server’s Version Vectors (VV)

● The client ask for the missing updates
● Asking the server for the Updates

● The client download the file’s data

11

Version Vectors

● Define a range of updates from the same server

● Pair of server’s DB GUID – range of updates

● Versions [0 – 8] are reserved

● Version 1 represent the replicated folder root

version_vector: struct frstrans_VersionVector
db_guid : 6ff04912-7f6c-4147-a3f9-6231534d919b

 low : 0x0000000000000009 (9)
 high : 0x000000000000000b (11)

12

Updates

1. Get version vectors (VVs)

2. Compute VV delta between the known VV and received VV

3. Get updates in the computed delta

version_vector: struct frstrans_VersionVector
db_guid : 6ff04912-7f6c-4147-a3f9-6231534d919b

 low : 0x0000000000000009 (9)
 high : 0x000000000000000b (11)

frs_update: struct frstrans_Update
present : 0x00000001 (1)
name_conflict : 0x00000000 (0)
attributes : 0x00000010 (16)
fence : Thu Jan 1 00:00:00 1970 UTC
clock : Wed Apr 25 10:16:15 2018 UTC
create_time : Wed Apr 25 10:15:55 2018 UTC
content_set_guid : 18b1586c-232b-4459-98b3-390939c96b8c
sha1_hash : 6f7860df40d05f1187414712fa730c8ad1d8c7a8
rdc_similarity : 00000000000000000000000000000000
uid_db_guid : 18b1586c-232b-4459-98b3-390939c96b8c
uid_version : 0x0000000000000001 (1)
gsvn_db_guid : ae0da2be-8a27-4e0d-9ecd-06f64efcf24a
gsvn_version : 0x0000000000000020 (32)
parent_db_guid : 00000000-0000-0000-0000-000000000000
parent_version : 0x0000000000000000 (0)
name : 'Folder2'
flags : 0x00000000 (0)

13

Updates

● Each created file is assigned a Unique Identifier (UID)

– A UID is a pair GUID – Version number

– The UID is used to track the object for its entire lifetime (moved or renamed)

• A particular version of a file is identified by its Global Version Sequence
Number (GVSN)

• When a file is modified the GVSN is incremented

uid_db_guid : ae0da2be-8a27-4e0d-9ecd-06f64efcf24a <= DB GUID
uid_version : 0x0000000000000022 (34) <= Version number

gsvn_db_guid : ae0da2be-8a27-4e0d-9ecd-06f64efcf24a <= DB GUID
gsvn_version : 0x0000000000000023 (35) <= Version number

FILE CREATED ON MEMBER 1

uid_db_guid : ae0da2be-8a27-4e0d-9ecd-06f64efcf24a
uid_version : 0x000000000000002c (44)

gsvn_db_guid : ae0da2be-8a27-4e0d-9ecd-06f64efcf24a
gsvn_version : 0x000000000000002c (44)

FILE MODIFIED ON MEMBER 2

uid_db_guid : ae0da2be-8a27-4e0d-9ecd-06f64efcf24a
uid_version : 0x000000000000002c (44)

gsvn_db_guid : d8f38038-ad91-4d15-9b0b-30feac8d65cf
gsvn_version : 0x000000000000000f (15)

14

Updates

• Folders are replicated in the same way as files

• Updates does not contain the file path, but the parent’s UID

attributes : 0x00000020 (32) <= Files
attributes : 0x00000010 (16) <= Folders

parent_db_guid : ae0da2be-8a27-4e0d-9ecd-06f64efcf24a
parent_version : 0x0000000000000025 (37)

15

Overview

Client Server

Establish session

Request version vectors

Request updates

Download data

Request version vectors

Request updates

Download data

Download data

Request version vectors

Establish connection

16

Retrieving updates

● The process of retrieving all the updates has its own state machine

● Retrieved updates are queued to be processed in another loop

● File data download can proceed as an independent process of
synchronizing version vectors and updates

● To enable replication across multiple folders, client and server
isolate the activities belonging to one folder in a DFS-R session

17

Asynchronous notifications

● The client is who drives the protocol

● The client requests to be notified when the server’s VV changes
(AsyncPoll)

● The AsyncPoll response carries the VV

● Only one pending Async poll per connections, shared among
sessions

18

Notifications

Start

Wait for notify

Request VV

Done?

Inbound
log

No Yes

Client Server

Establish session

Request VV

Request updates

Establish connection

AsyncPoll with VV

Request VV

AsyncPoll

Request Updates

Updates

AsyncPoll

AsyncPoll

AsyncPoll

19

Processing updates

20

Processing updates

● Recap
1.We got the server’s version vector

2.We computed the delta between server’s VV and our known VV

3.We got the missing updates and queued them

● Two level queue
● Pending VV → Traversed in order

● Pending updates → Out of order

● Pick a candidate update
● Updates must be installed in ancestral order to prevent conflicts

● Determine if it is necessary to download the data

● The downloaded data is staged to a file

● The update is installed in persistent storage

• When all updates pertaining to a VV are installed, update the stored VV

21

Downloads

● While processing updates, the client may download file data

● Four ways
● RdcGetFileData → Require RDC (Remote Differential Compression)

● RdcGetFileDataAsync → Require RDC and DCE-RPC byte pipes

● RawGetFileData

● RawGetFileDataAsync → Require DCE-RPC byte pipes

● A file starts with an initialization of file transfer
● InitializeFileTransferAsync, which carries the first 256KB of data

● Client request subsequent chunks
● RawGetFileData, chunk size 256KB

● And ends with a close call
● RdcClose

● Downloaded data is staged to a file

22

Download data

Client Server

RawGetFileData

RawGetFileData

RawGetFileData

RdcClose

InitializeTransferAsync

InitializeTransferAsync

RawGetFileData

RawGetFileData

RawGetFileData

RdcClose

23

Installing updates

24

The meet module

● The client runs as a Samba4 server service task
● Pick update to install and download data to a stage file

● The staged data must be installed to the final location through the
VFS layer

● There is a new smbd process, the meet module

● The dfsr service and the meet module communicate through IRPC

● The meet module needs read access to the DFS-R database to
recursively build the target path from parent’s UID.

25

Approach

1. Creates a connection to go through VFS layer

2. Handle tombstone updates (file deletions)

3. Uncompress staged data
● XPRESS format (LZ77 + Huffman coding)

4. Process the uncompressed stream
1.Metadata stream → Create, rename or move the file

2.Security stream → Sets the security descriptor

3.Flat data stram → [MS-BKUP] format. The content.

4. Other stream types (reparse data and compression data not handled yet)

5. Send result to dfsr service

26

Staged data format

● Two layers

– A sequence of streams

• Metadata

• Compression data

• Reparse data

• Flat data

• Security data

– Encapsulated on a compressed data format, even if uncompressed

Metadata stream

HDR Payload

Metadata stream

HDR Payload HDR Payload

Security stream

HDR Payload HDR Payload

Flat data stream

HDR Payload

HDR XPRESS block

Block
Header

Block data

XPRESS block

Block
Header

Block data

XPRESS block

Block
Header

Block data

XPRESS block

Block
Header

Block data

XPRESS block

Block
Header

Block
data

Chunk Chunk Chunk Chunk Chunk

27

Demo

28

Setup

SambaXP_TestGroup
{8db97569-cfd6-4b13-a99a-b4c6267b07f6}

SambaXP_TestFolder1
{9fdb9b8c-f88e-4438-b689-14a06bbe5c1a}

SambaXP_TestFolder2
{18b1586c-232b-4459-98b3-390939c96b8c}

Samba => DC 2
{af1ad561-2177-47f8-9e2e-4961ef8690c3}

DC1

M1 M2

Samba
DC

Samba => DC 1
{123d3ef6-8fa8-4eea-a1c2-d318b407dba2}

WIN2K12R2-3 DB Guid
{6ff04912-7f6c-4147-a3f9-6231534d919b}

WIN2K12R2-2 DB Guid
{d8f38038-ad91-4d15-9b0b-30feac8d65cf}

WIN2K12R2-1 DB Guid
{ae0da2be-8a27-4e0d-9ecd-06f64efcf24a}

29

Samba configuration

[global]
netbios name = MONCAYO
workgroup = SAMBA1
realm = SAMBA1.AD
server role = active directory domain controller

DFS-R
server services = +dfsr
dfsrsrv: sysvol_join = yes
DFS-R

New log categories
log level = 2 dfsr:10 dfsr_meet:10

30

Code

● Available on https://github.com/kernevil/samba/tree/dfs-r

● 55 patches
● 19 are the management tool (samba-tool dfsr)

● 42 files changed, 9939 insertions(+), 10 deletions(-)

https://github.com/kernevil/samba/tree/dfs-r

31

Next steps

32

Client side

● Protocol
● Slow sync sub-protocol
● Remote Differential Compression (RDC)?

● Receiving updates
● Credit system to throttle update retrieval / install

● Processing updates
● Verify hashes to skip data download on match

● Downloading data
● DCE-RPC byte pipes

● Installing updates
● Set timestamps from metadata stream
● Handle compression data stream
● Handle reparse data stream
● Handle flat data stream as a MS-BKUP stream

● Find a way to test the client in selftests without a windows server

33

Server side

● Big uncertainty yet

● How to “catch” file closes?
● Specially when samba is not “on the path”

● File system event notifications, like inotify?

● Kernel support?

● Force the windows clients to not use RPC byte pipes and RDC
● The use of RPC byte pipes can be avoided reporting ourselves as Windows

2003 on the connection response

● Is RDC mandatory? If not, how to tell the client to not use it?

● Database backend
● TDB?

● SQLite?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

