

Presented by Andrew Bartlet
Samba Team - Catalyst // June 2018

Patterns and ant-patterns in Satba Deveeopptent

Samba is a member project of the
Software Freedom Conseraancy

Andrew Bartoett and Cataoyst’s Satba Teat

● Samba Deaeloper since 2001

● Based in Wellington, New Zealand

● Team lead for the Catalyst Samba Team

● These aiews are mine alone

– I’m a litle passionate about this stufe

– Garting Sat

– Dpugoas Bagnaoo

– Gary Lpckyer

– Tim Beale

– Joe Guo

– Aarron Haslet

– Jamie McClymont

A taok abput what we dp weoo

● Samba is a successful, mult-decade software project

● Successful piaot from ‘just a fle seraer’ into also being a full AD DC

– Successful merge of Samba 3.x with the Samba4 fork (to be blunt)

● Internatonal collaboratae deaelopment

– Cross-cultural

And abput what we dpn’t dp weoo

● Contributor and contributon counts statc

– 2008-2011 was a boom tme per openhub.net data

● Lost the student contributor class

● Very few hobbyist contributors

● Most new contributors haae been employees of Vendors

– Catalyst team has grown, thanks to our commercial clients

Successfuooy avepided becpting a ‘.cpt’ prpject

● Samba has remained independent

– Neaer bought out

– Neaer sold out

● Nobody made their fortune

– But proaided gainful employment for many

– Launched many software engineering careers

● Passionately an independent Free Software project since 1992!

But we aosp havee np rpadtap

● The poorly updated wiki page doesn’t count

● We meet here to speak about our work, but rarely our directon

● Samba’s patern is not to menton a proposed directon untl we haae already taken it

– Great for not setng up false expectatons

– Or being asked to paint someone else’s bikeshed

● Hard for collaboratae planning

– Our patches are small changes that do ‘nothing’

– But no clear oaerall design

Pretty gppd cpttunity behaveipur

● We patern good behaaiour and generally see it on our lists

But reoy pn ‘knpw it when ypu see it’ fpr enfprcetent

● No writen code of conduct

● No contact point for concerns

● Relies on Jeremy seeing it and saying that it crossed the line

● Could be difcult working out how to respond without a writen plan

Cptprehensivee tests

● We haae thousands of tests

● By conaentonn

– All new features haae a full testsuite

– Bugs haae a testsuite to proae they fxed the bug

But fapping tests

● Enough to driae anyone fapping mad!

● Specifcally for me currentlyn

– raw.notfy

– dgram.netlogon

● A genuine cauton against marking tests as fapping (ignored)

– Real bugs behind many fapping tests

CI: “Npt rpcket science ruoe pf Spfware Engineering”

● automatiaaal maintain a repositorl of iode that aawals passes aaa the tests

● Atributed aia marge-bot to Graydon Hoare

– main author of Rust

● Well before Rust eaen started, Samba was doing that

● Pre-commit CI on the gate (autobuild)

– No merges

– Only rebase

– Re-start tests on each new base

But npt aveaioaboe putside the teat

● Non-team members haae no access to sn-deael

– The only host that really counts

● And no easy access to a substtute

– Make test takes 4-5 hours and is highly host-dependent

● Once reaiewed, team members often reply with ‘sorry, failed autobuild’

– And the cycle starts again

Coear cpding styoe guideoines

● README.Coding clearly specifes how our code should look

● C99, mostly

● Linux style, mostly

But tuch pf pur cpde stoo pre-dates it

● So the pressure of consistency is against the rules!

● New and changed lines in old functons follow the rules

– But old code is untouched

● Don’t change formatng and code at the same tme

– Because it makes it hard to see what actually changed

● Fix formatng or make easier to reaiew?

– What about global search/replace?

● And eaen re-indent patches are aaoided

Successfuooy itpoetented cpde reveiew

● Two-engineer reaiew has been a requirement for years now

● Code reaiew regularly catches important issues

● Now an unquestoned and systemic part of our deaelopment practce

But the wprkopad is quite un-eveen

● 1059 Andrew Bartlet

● 678 Jeremy Allison

● 484 Andreas Schneider

● 415 Garming Sam

● 386 Ralph Boehme

● 338 Amitay Isaacs

● 329 Martn Schwenke

● 303 Douglas Bagnall

● 283 Stefan Metzmacher

● 160 Volker Lendecke

● 71 Alexander Bokoaoy

● 66 Ralph Böhme

● 54 Richard Sharpe

● 51 Gary Lockyer

● 34 Daaid Disseldorp

● 26 Guenther Deschner

● 25 Christof Schmit

● 18 Uri Simchoni

● 15 Björn Jacke

And the itpoetentatpn is tixed

● Many Samba Deaelopers giae great, detailed reaiews

– I thank the reaiewers

– At Catalyst, Upstream code reaiew is ‘on the clock’, so I thank the Directors

● Howeaer some contributors haae a cloak of inaisibility

● Some reaiewers only reaiew for white-space

● No early upfront design stage reaiew

– Reaiewers often haae to reaerse engineer it from a massiae patch set

Many reveiews are quick and resppnsivee

● Partcularly when good trust is established between deaelopers

● Many simple patches reaiewed and accepted within hours

Spte cpntributprs havee a hard tte getng attentpn

● Let alone two reaiews for external contributors

● Certainly not the reactae feedback they need if we want to win them as new contributors

● Partcularly challenging for Python code

– The easiest to contribute to but with the least willing reaiewers

● For reaiewers, hard to commit to a reaiew and push of unknown code

– A lot of tme can be wasted on patches that don’t pass test

Spoveing spciao prpboets with engineering spoutpns

● This is clearly what the team is best at

● Whitespace issues

– Git commit hook

● Not running make test

– Autobuild

Prpppsed new engineering spoutpn: Gitoab

● This won’t solae all our problems

– But isn’t GitHub, so that is a start

● Possibility to use merge requests to describe oaerall goals

– E-mail integraton allowing reply-by-mail

● GitLab is being adopted by Debian and Gnome

https:////gitoab.cpt//cataoyst-satba//satba

● Catalyst Stafe repo on gitlab.com

– Used for day to day deaelopment

– Full CI run in the Catalyst Cloud and shared runners

– master branch mirrored in

● Been in use for a couple of months as a prototype for broader Samba team use

● Merge requests only lightly tested

– Git branches and CI links posted to samba-technical manually

https:////gitoab.cpt//satba-teat//satba

● I’ae set up an ofcal Samba Team mirror on gitlab.com

– Fork this for a priaate deaelopment repo

● Also a collaboratae deaelopment repo heren

– htpsn//gitlab.com/samba-team/deael/samba

– Inaited members can run the full CI here

● (see next slide)

– Ofcial branches mirrored

https://gitlab.com/samba-team/samba
https://gitlab.com/samba-team/devel/samba

Rackspace hpsted CI

● Gitlab.com shared runners (CI) can’t run our full testsuite

● A gitlab CI runner is hosted at Rackspace

– Described by an ansible playbook

– Dynamically deploys 4 CPU, 8GB ram machines

– Runs the remaining not-yet-split-up tests (4h30m)

● First $2000 costs each month proaided by Rackspace

– Coaers about 2000 CI runs

Cpuod we becpte a GitLab prpject?

● Many adaantages to being mailing list based

● Howeaer we may miss the ‘GitHub generaton’

● We might sneer

– Can the ‘GitHub kids’ really code to our leael?

– But new deaelopers need to fnd us and make a frst contributon

– Joining a mailing list to make a frst contributon was more reasonable in early 2000s

● GitLab and GitHub used in uniaersity courses now

What cpuod it oppk oike?

● We should keep sn-deael for now

– But accept, autobuild and then close requests like we do GitLab pull requests

● Prefer not to do another notfcaton bot

– I would prefer all deaelopers joined the project and got direct notfcatons

– This allows reply-by-email

● Consider something like ‘marge-bot’ in the long term

– Manages an autobuild queue automatcally based on reaiew tags and CI results

What issues wpuod it address

● Merge requests could contain an oaerall design

– A few paragraphs on the ‘what and why’

– Stays with the patch set for life of the series

● Giae non-team members access to CI

– Contributors and reaiewers fnd out they if haae broken tests up front

– Potentally pure more style checks into the CI

● Track outstanding patches and assigned reaiewers

● Easier frst contributons

On a oighter npte

● Cauton light trolling ahead

Abpvee aoo: git patches as perfprtance art

● The most important thing is solid, tested code

Abpvee aoo: git patches as perfprtance art

● The most important thing is clear code

– The most important thing is solid, tested code

Abpvee aoo: git patches as perfprtance art

● The most important thing is following README.Coding

– The most important thing is clear code

● The most important thing is solid, tested code

Abpvee aoo: git patches as perfprtance art

● The most important thing is a ‘clear’ set of patches without unrelated changes

– The most important thing is following README.Coding

● The most important thing is clear code

– The most important thing is solid, tested code

Abpvee aoo: git patches as perfprtance art

● The most important thing is the 80 column rule

– The most important thing is a ‘clear’ set of patches without unrelated changes

● The most important thing is following README.Coding

– The most important thing is clear code

● The most important thing is solid, tested code

Abpvee aoo: git patches as perfprtance art

● The most important thing is the order of patches

– The most important thing is the 80 column rule

● The most important thing is a ‘clear’ set of patches without unrelated changes

– The most important thing is following README.Coding

● The most important thing is clear code

● The most important thing is solid, tested code

Abpvee aoo: git patches as perfprtance art

● The most important thing is whitespace

– The most important thing is the order of the patches

● The most important thing is the 80 column rule

– The most important thing is a ‘clear’ set of patches without unrelated

changes

● The most important thing is following README.Coding

● The most important thing is clear code

● The most important thing is solid, tested code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

