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Patterns and ant-patterns in Satba Deveeopptent

Samba is a member project of the 
Software Freedom Conseraancy



 

 

Andrew Bartoett and Cataoyst’s Satba Teat

● Samba Deaeloper since 2001

● Based in Wellington, New Zealand

● Team lead for the Catalyst Samba Team

● These aiews are mine alone

– I’m a litle passionate about this stufe

– Garting Sat

– Dpugoas Bagnaoo

– Gary Lpckyer

– Tim Beale

– Joe Guo

– Aarron Haslet

– Jamie McClymont



 

 

A taok abput what we dp weoo

● Samba is a successful, mult-decade software project

● Successful piaot from ‘just a fle seraer’ into also being a full AD DC

– Successful merge of Samba 3.x with the Samba4 fork (to be blunt)

● Internatonal collaboratae deaelopment

– Cross-cultural



 

 

And abput what we dpn’t dp weoo

● Contributor and contributon counts statc

– 2008-2011 was a boom tme per openhub.net data

● Lost the student contributor class

● Very few hobbyist contributors

● Most new contributors haae been employees of Vendors

– Catalyst team has grown, thanks to our commercial clients



 

 

Successfuooy avepided becpting a ‘.cpt’ prpject

● Samba has remained independent

– Neaer bought out

– Neaer sold out

● Nobody made their fortune

– But proaided gainful employment for many

– Launched many software engineering careers

● Passionately an independent Free Software project since 1992!



 

 

But we aosp havee np rpadtap

● The poorly updated wiki page doesn’t count

● We meet here to speak about our work, but rarely our directon

● Samba’s patern is not to menton a proposed directon untl we haae already taken it

– Great for not setng up false expectatons

– Or being asked to paint someone else’s bikeshed

● Hard for collaboratae planning

– Our patches are small changes that do ‘nothing’

– But no clear oaerall design



 

 

Pretty gppd cpttunity behaveipur

● We patern good behaaiour and generally see it on our lists



 

 

But reoy pn ‘knpw it when ypu see it’ fpr enfprcetent

● No writen code of conduct

● No contact point for concerns

● Relies on Jeremy seeing it and saying that it crossed the line

● Could be difcult working out how to respond without a writen plan



 

 

Cptprehensivee tests

● We haae thousands of tests

● By conaentonn

– All new features haae a full testsuite

– Bugs haae a testsuite to proae they fxed the bug



 

 

But fapping tests

● Enough to driae anyone fapping mad!

● Specifcally for me currentlyn

– raw.notfy

– dgram.netlogon

● A genuine cauton against marking tests as fapping (ignored)

– Real bugs behind many fapping tests



 

 

CI: “Npt rpcket science ruoe pf Spfware Engineering”

● automatiaaal maintain a repositorl of iode that aawals passes aaa the tests

● Atributed aia marge-bot to Graydon Hoare

– main author of Rust

● Well before Rust eaen started, Samba was doing that

● Pre-commit CI on the gate (autobuild)

– No merges

– Only rebase

– Re-start tests on each new base



 

 

But npt aveaioaboe putside the teat

● Non-team members haae no access to sn-deael

– The only host that really counts

● And no easy access to a substtute

– Make test takes 4-5 hours and is highly host-dependent

● Once reaiewed, team members often reply with ‘sorry, failed autobuild’

– And the cycle starts again



 

 

Coear cpding styoe guideoines

● README.Coding clearly specifes how our code should look

● C99, mostly

● Linux style, mostly



 

 

But tuch pf pur cpde stoo pre-dates it

● So the pressure of consistency is against the rules!

● New and changed lines in old functons follow the rules

– But old code is untouched

● Don’t change formatng and code at the same tme

– Because it makes it hard to see what actually changed

● Fix formatng or make easier to reaiew?

– What about global search/replace?

● And eaen re-indent patches are aaoided



 

 

Successfuooy itpoetented cpde reveiew

● Two-engineer reaiew has been a requirement for years now

● Code reaiew regularly catches important issues

● Now an unquestoned and systemic part of our deaelopment practce



 

 

But the wprkopad is quite un-eveen

● 1059 Andrew Bartlet 

● 678 Jeremy Allison 

● 484 Andreas Schneider 

● 415 Garming Sam 

● 386 Ralph Boehme 

● 338 Amitay Isaacs 

● 329 Martn Schwenke 

● 303 Douglas Bagnall

● 283 Stefan Metzmacher 

● 160 Volker Lendecke 

● 71 Alexander Bokoaoy 

● 66 Ralph Böhme 

● 54 Richard Sharpe 

● 51 Gary Lockyer 

● 34 Daaid Disseldorp 

● 26 Guenther Deschner 

● 25 Christof Schmit 

● 18 Uri Simchoni 

● 15 Björn Jacke



 

 

And the itpoetentatpn is tixed

● Many Samba Deaelopers giae great, detailed reaiews

– I thank the reaiewers

– At Catalyst, Upstream code reaiew is ‘on the clock’, so I thank the Directors

● Howeaer some contributors haae a cloak of inaisibility

● Some reaiewers only reaiew for white-space

● No early upfront design stage reaiew

– Reaiewers often haae to reaerse engineer it from a massiae patch set



 

 

Many reveiews are quick and resppnsivee

● Partcularly when good trust is established between deaelopers

● Many simple patches reaiewed and accepted within hours



 

 

Spte cpntributprs havee a hard tte getng attentpn

● Let alone two reaiews for external contributors

● Certainly not the reactae feedback they need if we want to win them as new contributors

● Partcularly challenging for Python code

– The easiest to contribute to but with the least willing reaiewers

● For reaiewers, hard to commit to a reaiew and push of unknown code

– A lot of tme can be wasted on patches that don’t pass test



 

 

Spoveing spciao prpboets with engineering spoutpns

● This is clearly what the team is best at

● Whitespace issues

– Git commit hook

● Not running make test

– Autobuild



 

 

Prpppsed new engineering spoutpn: Gitoab

● This won’t solae all our problems

– But isn’t GitHub, so that is a start

● Possibility to use merge requests to describe oaerall goals

– E-mail integraton allowing reply-by-mail

● GitLab is being adopted by Debian and Gnome



 

 

https:////gitoab.cpt//cataoyst-satba//satba

● Catalyst Stafe repo on gitlab.com

– Used for day to day deaelopment

– Full CI run in the Catalyst Cloud and shared runners

– master branch mirrored in

● Been in use for a couple of months as a prototype for broader Samba team use

● Merge requests only lightly tested

– Git branches and CI links posted to samba-technical manually



 

 

https:////gitoab.cpt//satba-teat//satba

● I’ae set up an ofcal Samba Team mirror on gitlab.com

– Fork this for a priaate deaelopment repo

● Also a collaboratae deaelopment repo heren

– htpsn//gitlab.com/samba-team/deael/samba

– Inaited members can run the full CI here 

● (see next slide)

– Ofcial branches mirrored

https://gitlab.com/samba-team/samba
https://gitlab.com/samba-team/devel/samba


 

 

Rackspace hpsted CI

● Gitlab.com shared runners (CI) can’t run our full testsuite

● A gitlab CI runner is hosted at Rackspace

– Described by an ansible playbook

– Dynamically deploys 4 CPU, 8GB ram machines

– Runs the remaining not-yet-split-up tests (4h30m)

● First $2000 costs each month proaided by Rackspace

– Coaers about 2000 CI runs



 

 

Cpuod we becpte a GitLab prpject?

● Many adaantages to being mailing list based

● Howeaer we may miss the ‘GitHub generaton’

● We might sneer

– Can the ‘GitHub kids’ really code to our leael?

– But new deaelopers need to fnd us and make a frst contributon

– Joining a mailing list to make a frst contributon was more reasonable in early 2000s

● GitLab and GitHub used in uniaersity courses now



 

 

What cpuod it oppk oike?

● We should keep sn-deael for now

– But accept, autobuild and then close requests like we do GitLab pull requests

● Prefer not to do another notfcaton bot

– I would prefer all deaelopers joined the project and got direct notfcatons

– This allows reply-by-email

● Consider something like ‘marge-bot’ in the long term

– Manages an autobuild queue automatcally based on reaiew tags and CI results



 

 

What issues wpuod it address

● Merge requests could contain an oaerall design

– A few paragraphs on the ‘what and why’

– Stays with the patch set for life of the series

● Giae non-team members access to CI

– Contributors and reaiewers fnd out they if haae broken tests up front

– Potentally pure more style checks into the CI

● Track outstanding patches and assigned reaiewers

● Easier frst contributons



 

 

On a oighter npte

● Cauton light trolling ahead



 

 

Abpvee aoo: git patches as perfprtance art

● The most important thing is solid, tested code



 

 

Abpvee aoo: git patches as perfprtance art

● The most important thing is clear code

– The most important thing is solid, tested code



 

 

Abpvee aoo: git patches as perfprtance art

● The most important thing is following README.Coding

– The most important thing is clear code

● The most important thing is solid, tested code



 

 

Abpvee aoo: git patches as perfprtance art

● The most important thing is a ‘clear’ set of patches without unrelated changes

– The most important thing is following README.Coding

● The most important thing is clear code

– The most important thing is solid, tested code



 

 

Abpvee aoo: git patches as perfprtance art

● The most important thing is the 80 column rule

– The most important thing is a ‘clear’ set of patches without unrelated changes

● The most important thing is following README.Coding

– The most important thing is clear code

● The most important thing is solid, tested code



 

 

Abpvee aoo: git patches as perfprtance art

● The most important thing is the order of patches

– The most important thing is the 80 column rule

● The most important thing is a ‘clear’ set of patches without unrelated changes

– The most important thing is following README.Coding

● The most important thing is clear code

● The most important thing is solid, tested code



 

 

Abpvee aoo: git patches as perfprtance art

● The most important thing is whitespace

– The most important thing is the order of the patches

● The most important thing is the 80 column rule

– The most important thing is a ‘clear’ set of patches without unrelated 

changes

● The most important thing is following README.Coding

● The most important thing is clear code

● The most important thing is solid, tested code
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