Patterns and anti-patterns in Samba Development

Presented by Andrew Bartlett
Samba Team - Catalyst / June 2018

catalystd sAMBA <
2

open source technologists

Samba is a member project of the fiware freed
Software Freedom Conservancy c(s)onvgaerenr,egr%@y

Andrew Bartlett and Catalyst’s Samba Team

Samba Developer since 2001

Based in Wellington, New Zealand

Team lead for the Catalyst Samba Team

These views are mine alone

- I'm a little passionate about this stuff

open source technologists

Garming Sam
Douglas Bagnall
Gary Lockyer
Tim Beale

Joe Guo

Aarron Haslett

Jamie McClymont

catalystid

A talk about what we do well

* Samba is a successful, multi-decade software project
* Successful pivot from ‘just a file server’ into also being a full AD DC

- Successful merge of Samba 3.x with the Samba4 fork (to be blunt)
* International collaborative development

- Cross-cultural

open source technologists catalyst 4

And about what we don'’t do well

Contributor and contribution counts static

- 2008-2011 was a boom time per openhub.net data

Lost the student contributor class

Very few hobbyist contributors
* Most new contributors have been employees of Vendors

- Catalyst team has grown, thanks to our commercial clients

open source technologists catalystid

Successfully avoided becoming a .com’ project

* Samba has remained independent

- Never bought out
- Never sold out

* Nobody made their fortune

- But provided gainful employment for many
- Launched many software engineering careers

* Passionately an independent Free Software project since 1992!

open source technologists catalyst 4

But we also have no roadmap

* The poorly updated wiki page doesn’t count

* We meet here to speak about our work, but rarely our direction

* Samba’s pattern is not to mention a proposed direction until we have already taken it
- Great for not setting up false expectations
— Or being asked to paint someone else’s bikeshed

* Hard for collaborative planning
— Our patches are small changes that do ‘nothing’

= But no clear overall design

open source technologists catalystid

Pretty good community behaviour

* We pattern good behaviour and generally see it on our lists

open source technologists catalyst 4

But rely on ‘know it when you see it’ for enforcement

No written code of conduct

* No contact point for concerns

Relies on Jeremy seeing it and saying that it crossed the line

Could be difficult working out how to respond without a written plan

open source technologists catalyst 4

Comprehensive tests

* We have thousands of tests
* By convention:

- All new features have a full testsuite

— Bugs have a testsuite to prove they fixed the bug

open source technologists catalyst 4

But flapping tests

* Enough to drive anyone flapping mad!
* Specifically for me currently:
- raw.notify
- dgram.netlogon
* A genuine caution against marking tests as flapping (ignored)

— Real bugs behind many flapping tests

open source technologists catalyst 4

Cl: “Not rocket science rule of Software Engineering”

* automatically maintain a repository of code that always passes all the tests
* Attributed via marge-bot to Graydon Hoare
= main author of Rust
* Well before Rust even started, Samba was doing that
* Pre-commit Cl on the gate (autobuild)
— No merges
= Only rebase

— Re-start tests on each new base

open source technologists catalyst 4

But not available outside the team

* Non-team members have no access to sn-devel
— The only host that really counts
* And no easy access to a substitute
- Make test takes 4-5 hours and is highly host-dependent
* Once reviewed, team members often reply with ‘sorry, failed autobuild’

- And the cycle starts again

open source technologists catalyst 4

Clear coding style guidelines

* README.Coding clearly specifies how our code should look
e (C99, mostly

* Linux style, mostly

open source technologists catalyst 4

But much of our code still pre-dates it

* So the pressure of consistency is against the rules!
* New and changed lines in old functions follow the rules
— But old code is untouched
* Don't change formatting and code at the same time
- Because it makes it hard to see what actually changed
* Fix formatting or make easier to review?
- What about global search/replace?

* And even re-indent patches are avoided

open source technologists catalystid

Successfully implemented code review

* Two-engineer review has been a requirement for years now
* Code review regularly catches important issues

* Now an unquestioned and systemic part of our development practice

open source technologists catalyst 4

But the workload is quite un-even

« 1059
. 678
. 484
.« 415
- 386
.« 338
. 329
.« 303
. 283

Andrew Bartlett
Jeremy Allison
Andreas Schneider
Garming Sam
Ralph Boehme
Amitay Isaacs
Martin Schwenke
Douglas Bagnall

Stefan Metzmacher

open source technologists

160 Volker Lendecke

71

66

54

51

34

26

25

18

15

Alexander Bokovoy
Ralph Bohme
Richard Sharpe
Gary Lockyer

David Disseldorp
Guenther Deschner
Christof Schmitt
Uri Simchoni

Bjorn Jacke

catalystid

And the implementation is mixed

Many Samba Developers give great, detailed reviews

- | thank the reviewers
- At Catalyst, Upstream code review is ‘on the clock’, so | thank the Directors

* However some contributors have a cloak of invisibility

* Some reviewers only review for white-space

No early upfront design stage review

- Reviewers often have to reverse engineer it from a massive patch set

open source technologists catalystid

Many reviews are quick and responsive

* Particularly when good trust is established between developers

* Many simple patches reviewed and accepted within hours

open source technologists catalyst 4

Some contributors have a hard time getting attention

* Let alone two reviews for external contributors
* Certainly not the reactive feedback they need if we want to win them as new contributors
* Particularly challenging for Python code
— The easiest to contribute to but with the least willing reviewers
* Forreviewers, hard to commit to a review and push of unknown code

- Alot of time can be wasted on patches that don’t pass test

open source technologists catalystid

Solving social problems with engineering solutions

* This is clearly what the team is best at
* Whitespace issues
- Git commit hook

* Not running make test

- Autobuild

open source technologists catalyst 4

Proposed new engineering solution: Gitlab

* This won't solve all our problems
- Butisn't GitHub, so that is a start

* Possibility to use merge requests to describe overall goals
- E-mail integration allowing reply-by-mail

* GitLab is being adopted by Debian and Gnome

open source technologists catalyst 4

https:/gitlab.com/catalyst-samba/samba

* Catalyst Staff repo on gitlab.com

- Used for day to day development
= Full Cl run in the Catalyst Cloud and shared runners
— master branch mirrored in

* Been in use for a couple of months as a prototype for broader Samba team use
* Merge requests only lightly tested

— Git branches and Cl links posted to samba-technical manually

open source technologists catalystid

https:/gitlab.com/samba-team/samba

* |'ve set up an offical Samba Team mirror on gitlab.com

- Fork this for a private development repo

* Also a collaborative development repo here:

- https://gitlab.com/samba-team/devel/samba
- Invited members can run the full Cl here

* (see next slide)

- Official branches mirrored

open source technologists catalyst 4

https://gitlab.com/samba-team/samba
https://gitlab.com/samba-team/devel/samba

Rackspace hosted CI

* Gitlab.com shared runners (Cl) can’t run our full testsuite
* Agitlab Cl runner is hosted at Rackspace

— Described by an ansible playbook
— Dynamically deploys 4 CPU, 8GB ram machines
— Runs the remaining not-yet-split-up tests (4h30m)

* First $2000 costs each month provided by Rackspace

- Covers about 2000 ClI runs

open source technologists catalystid

Could we become a GitLab project?

* Many advantages to being mailing list based
* However we may miss the ‘GitHub generation’
* We might sneer

— Can the ‘GitHub kids' really code to our level?
- But new developers need to find us and make a first contribution
- Joining a mailing list to make a first contribution was more reasonable in early 2000s

* GitLab and GitHub used in university courses now

open source technologists catalystid

What could it look like?

* We should keep sn-devel for now

- But accept, autobuild and then close requests like we do GitLab pull requests

* Prefer not to do another notification bot

- I would prefer all developers joined the project and got direct notifications
- This allows reply-by-email
* Consider something like ‘marge-bot’ in the long term

- Manages an autobuild queue automatically based on review tags and Cl results

open source technologists catalystid

What issues would it address

* Merge requests could contain an overall design

- A few paragraphs on the ‘what and why’
- Stays with the patch set for life of the series

* Give non-team members access to Cl

— Contributors and reviewers find out they if have broken tests up front

- Potentially pure more style checks into the Cli

Track outstanding patches and assigned reviewers

Easier first contributions

open source technologists catalystid

On a lighter note

* Caution light trolling ahead

open source technologists catalyst 4

Above all: git patches as performance art

* The most important thing is solid, tested code

open source technologists catalyst 4

Above all: git patches as performance art

* The most important thing is clear code

- The most important thing is solid, tested code

open source technologists catalyst 4

Above all: git patches as performance art

* The most important thing is following README.Coding

— The most important thing is clear code

* The most important thing is solid, tested code

open source technologists catalyst 4

Above all: git patches as performance art

* The most important thing is a ‘clear’ set of patches without unrelated changes
— The most important thing is following README.Coding

* The most important thing is clear code

- The most important thing is solid, tested code

open source technologists catalyst 4

Above all: git patches as performance art

* The most important thing is the 80 column rule
— The most important thing is a ‘clear’ set of patches without unrelated changes

* The most important thing is following README.Coding

- The most important thing is clear code

* The most important thing is solid, tested code

open source technologists catalyst 4

Above all: git patches as performance art

* The most important thing is the order of patches

— The most important thing is the 80 column rule

* The most important thing is a ‘clear’ set of patches without unrelated changes

- The most important thing is following README.Coding

* The most important thing is clear code

* The most important thing is solid, tested code

open source technologists catalystid

Above all: git patches as performance art

* The most important thing is whitespace

— The most important thing is the order of the patches

* The most important thing is the 80 column rule
- The most important thing is a ‘clear’ set of patches without unrelated
changes
* The most important thing is following README.Coding
* The most important thing is clear code

* The most important thing is solid, tested code

open source technologists catalystid

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

