

Presented by Andrew Bartlet
Samba Team - Catalyst // June 2018

A Few things happened on the way to LMDB

Samba is a member project of the
Software Freedom Conseraancy

Andrew Bartlet and Catalyst’s Samba Team

● Samba Deaeloper since 2001

● Based in Wellington, New Zealand

● Team lead for the Catalyst Samba Team,

including:

– Garming Sam

– Douglas Bagnall

– Gary Lockyer

– Tim Beale

– Joe Guo

– Aarron Haslet

– Jamie McClymont

Not really a story about LMDB

● LMDB prety much did what it said on the tn

● Instead LMDB taught us about Samba and LDB

● Numerous locking issues found and fied

● A new key-aalue layer added

● And so, so many tests

Customer request: 64-bit DB

● Concerned that the 4GB DB could be flled too quickly

– Wantng to store g 100,000 users in a single domainn

● Main concern is the hard limit of TDB

● LMDB chosen as a modern key-aalue store

– Used in OpenLDAP

Timeline

● LMDB was prototyped in Jan 2017

– Garming Sam

– Inspired by, but rewriten from Jakob Hrozek’s earlier prototype

● GUID-indei LDB implemented in July/August 2017

– LMDB requires a maiimum 511 byte key length

● Primary deaelopment Jan → May 2018

– Gary Lockyer

A new approach: Key/Value layer

● Jakob’s approach was to copy ldb_tdb and modify it

● Garming and I decided to instead add a key-aalue layer

– Aaoid code duplicaton

– Allow more than just LMDB (perhaps LMDBi, LeaelDB)

– Share performance and correctness improaements with ldb_tdb

– Like dbwrap in concept but specifc to LDB needs

Key-value API

● int (*store)(struct ltdb_priaate *ltdb, struct ldb_aal key, struct ldb_aal data, int fags)

● int (*delete)(struct ltdb_priaate *ltdb, struct ldb_aal key);

● int (*iterate)(struct ltdb_priaate *ltdb, ldb_ka_traaerse_fn fn, aoid *cti);

● int (*update_in_iterate)(struct ltdb_priaate *ltdb, struct ldb_aal key, struct ldb_aal key2,

struct ldb_aal data, aoid *cti);

● int (*fetch_and_parse)(struct ltdb_priaate *ltdb, struct ldb_aal key, int (*parser)(struct

ldb_aal key, struct ldb_aal data, aoid *priaate_data), aoid *cti);

Locking API

● Read Locks

– int (*lock_read)(struct ldb_module *);

– int (*unlock_read)(struct ldb_module *);

● Transactons

– int (*begin_write)(struct ltdb_priaate *);

– int (*prepare_write)(struct ltdb_priaate *);

– int (*abort_write)(struct ltdb_priaate *);

– int (*finish_write)(struct ltdb_priaate *);

Meta API

● int (*error)(struct ltdb_priaate *ltdb);

● const char * (*errorstr)(struct ltdb_priaate *ltdb);

● const char * (*name)(struct ltdb_priaate *ltdb);

● bool (*has_changed)(struct ltdb_priaate *ltdb);

● bool (*transacton_actve)(struct ltdb_priaate *ltdb);

First Hurdle: Locking

● Eaen the prototype found issuesn

– Demonstrated the lack of whole-DB locking

– Fiied for Samba 4.7 last year

● Probably behind many of our replicaton issues

Second Hurdle: More Locking!

● It just wouldn’t pass make testn

– More strange failures in replicaton

● Unlock ordering issues in replicaton

– highestCommitedUSN aisible before the data

– Fiies proposed for backport to Samba 4.7 and 4.8

● Modifcaton without locks (at startup) in Samba 4.8

– DB-init tme only, but not good

– Added checks to key-aalue layer to preaent re-occurrence

Third hurdle: Maximum key size

● TDB has an unlimited key size

● LMDB is limited to 511 bytes

● LDB traditonally used the DN as the key

– Addressed by the new GUID key system

But what about indexes?

● Indei created by putng indei key and aalue in the TDB key

– @INDEX:SAMACCOUNTNAME:abartlet

● Original plan was to keep the indei in TDB

– But the more we understood the locking the less we wanted to mii TDB and LMDB

lock ordering

● Addressed by truncatng the indei and coping with multple matches

– Ironically found and fied the 4.8 upgrade bug

– But didn’t realise the importance before eaeryone notced

And what about performance?

● Three performance tools measured so far:

– Make perftest on our Hardware test seraer

● Old AMD Athalonn

– Trafc replay tool in the cloud

– Adding users and users into groups of my workstaton

Make perfest: a small dissapointment

● 30% performance lossn

– LMDB uses write(), and a read-only mmap()

– socket_wrapper intercepts write()

● Workaround:

– Use Linui userspace namespaces instead of socket_wrapper

– Patches to upstream this stll pending

● End result is no major change, perhaps 10% slower

Trafc replay

● This is a tool to replay an amplifed anonymous trafc capture

● Similar numbers to TDB

● Need to re-try with a larger DB

– We think LMDB will show most strength at large sizes

Adding users and users into groups of my workstaton

● In a four-hour benchmark adding users and adding to one to four groups (in rotaton):

– Samba 4.4: 26,000 users

– Samba 4.5: 48,000 users

– Samba 4.6: 55,000 users

– Samba 4.7: 85,000 users

– Samba 4.8: 100,000 users

– Samba 4.9: 100,000 users (TDB)

– Samba 4.9: 45,000 users (LMDB)

Ouch. What went wrong!

● fsync()/fdatasync()/msync() stll called

● Patches quickly writen

● New numbers:

– Samba 4.9: 100,000 users (TDB)

– Samba 4.9: 124,000 users (LMDB, no fsync())

● Lesson:

– Samba’s module stack is stll the slowest factor

TDB vs LMDB (latency vs number of users added)

Flame Graph Search

do..

replmd_..

ld..

sys..

std_e..

_tc_fre..

lt..

ltdb_search_and_return_base

ltdb_se..

ldb_wait

lmdb..

__p..

ldb_next_request

_tc_fre..

extended_callback

p..

ldb_module_done

ltdb_s..

extended_callback_ldb

_int_f..

_tc_fre..

ldb_w..

ltd..

_tc_fre..

ltd..

lt..

re..

std_ev..

new..

ldb_wait

ldb_module_done
ltdb_modify_i..

_tc_fre..

dsdb..

extended_replace_callback
_tc_fre..

ldb_next_request

ltdb..

_tc_fre..

de..

lt..

d..

_tevent..

ltdb_search

std_..

_teve..

ldb_next_request

h..

samldb_modify

ltdb..

ldb_next_request

lt..

es_callback

_tc..

_..

pag..

td..

_talloc..

extended_callback_ldb

_tc_fre..

__..

lt..

ldb_next_request

ldb_next_request

sy..

teve..

rdn_name_modify

partition_req_callback

_tc_fre..

ldb_next_request

std_event_loop_once

e..

ldb_module_send_entry

_t..

ltdb_..

epoll..

ltdb..

_tc_fre..

_tc_fre..

_tc_fre..
ltdb_..

lt..

_teven..

epoll_e..

partition_req_callback

dsdb_dn_parse_trusted

__..

ldb_module_done

ltdb_ca..

__..

s..

dsdb_next_callback

_tc_fre..

lt..

do_..

password_hash_nee..

lm..

_tc..

ext..

_tc_fre..

[unknown]

lt..

_talloc..

_tc_f..

epoll_..

_tc_fre..

ltdb_..

lt..

extended_dn_in_modify

lt..

ld..

ltdb_..

dsdb_m..

py_ldb_modify
PyEval_EvalFrameEx

do..

ltdb_modify

tombstone_reanimate_modify

_tc_fre..

li..

ltdb..

tevent..

ent..

ld..

__..

lt..

ld..

pa..

un..

attr_handler

ltdb_c..

ldb_module_done

ltd..

lm..

epoll_event_loop_once

_tc_fre..

ldb_next_request

ltdb_se..

saml..

operational_callback

lt..

d..

lt..

td..

ldb_next_request

ld..

extended_callback

ldb_next_request

ldb_next_request

teven..

_tc..

objectclass_modify

dsdb..

__GI..

lt..

_tc_fre..

acl_modify

d..

lt..
__m..

_tc_fre..

ltdb_request_done

lt..

lt..

ld..

d..

dsdb_mo..

log_modify

_tal..

ldb_wait

_tc_fre..

_..

__me..

[unknown]

lt..

py_ldb_add

ltdb..

ltdb_callback

ltdb_s..

ld..

python

ldb_next_request

lt..

password_hash_mod..

ltdb..

ldb_dn_fr..

ge..

ldb_..

epol..

_t..

instancetype_mod

_tevent_loop_once

std_eve..

ldb_module_send_entry

ldb_module_done

objectclass_attrs..

lt..

lm..

tevent_common_loop_timer_delay

ldb_module_send_entry

descriptor_modify

_..

replmd_m..

ltdb_..

_int_mal..

_tc_fre..

_tal..

lmdb_..

tevent_..

_tc..

__memmo..

replmd_modify

extended_dn_in_fix

_tc_fre..

_tc_fre..

_t..

_tev..

dsdb_next_callback

vfs..

en..

_tc_fre..
lo..

OK, so not so bad

● We addressed the customer’s desire for scale

– Currently limited to 6GB but that is compile-tme constant only

● Opens up new opportunites

● Current Status:

– Stll accessed behind sam.ldb (a TDB)

– Stll one-subtree per DB fle

LMDB: The future

● Use the LMDB b-tree propertes in for the indei

– Allow prefi matching

– Allow <= etc

● Use sub-databases:

– Perhaps one per indei?

– Perhaps one per sub-tree?

● Use nested transactons to make the indei safer

LMDB: Sharp Edges

● Different locking behaaiour (no eiclusiae access)

● Files are sparse by default

– DB operatons can fll the fle and partton without going aia a specifc resize

● Files are not eitended automatcally

– The inaerse to the aboae, when a fle is full unlike TDB there is no auto-resize

– Requires that the admin or Samba know the size up-front

● LDB / Samba has not required this kind of planning in the past

● Need real-world eiperience

Beyond LMDB: Supportng more connectons on each DC

● Samba 4.6 remoaes single-process restrictons on NETLOGON

– Really important for 802.1i backed authentcaton

● Samba 4.7 supports a mult-process LDAP seraer

– Actually reduces number of connectons you can ft in memory (oops)

● Samba 4.8 adds a prefork mode for LDAP

– Great for a big AD DC with many, many clients

● Samba 4.9: should we make prefork the default?

– Howeaer NETLOGON would be single-process in that mode (ouch)

New trafc_replay Performance tool

● We can now record and re-play trafc

– Recreate a real-world load

– Amplify the trafc

● Comparatae testng now possible between Windows and Samba

● Samba is now within about 50% of Windows performance

– Against a single-CPU target system

– Allows us to slow both down enough for the trafc_replay to saturate it

Performance
against Samba and
Windows

● 1 aCPU

● Catalyst Cloud

● After 35i speed the tool

eihausts itself

● So this is not the upper bound

Wanted: More network captures

● We need more sample of network trafc

– Anonymised with the trafc_summary.pl script

● Ideally with permission to publish (eg the Samba wiki)

● Diaerse real world loads will aaoid skewed perf testng

make perfest
graphs
 - April 2016
to Dec 2017

Catalyst development beyond performance

● Encrypted secrets (4.8)

– Use a local fle key to encrypt DB secrets

– (could then be network-deployed)

● Unii-compatble passwords (4.7)

– Store and retrieae sha256/sha512 crypt()

passwords to sync with other systems

● Audit Logging (4.7 and 4.9)

– Output audit logs into JSON

● RODC support (4.7)

– This was eiperimental untl now

● DNS Zone scaaenging (for 4.9)

● Demote cleans up own DNS records (4.9)

● Fine Grained Password Policy (4.9)

● Domain Backup (for 4.9)

● Domain Rename (for 4.9)

Catalyst's Open Source Technologies – Questons?

Want to work with my team at Catalyst to make your Samba scale? - talk to me in the hallway trackn

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

