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A Few things happened on the way to LMDB

Samba is a member project of the 
Software Freedom Conseraancy



 

 

Andrew Bartlet and Catalyst’s Samba Team

● Samba Deaeloper since 2001

● Based in Wellington, New Zealand

● Team lead for the Catalyst Samba Team, 

including:

– Garming Sam

– Douglas Bagnall

– Gary Lockyer

– Tim Beale

– Joe Guo

– Aarron Haslet

– Jamie McClymont



 

 

Not really a story about LMDB

● LMDB prety much did what it said on the tn

● Instead LMDB taught us about Samba and LDB

● Numerous locking issues found and fied

● A new key-aalue layer added

● And so, so many tests



 

 

Customer request: 64-bit DB

● Concerned that the 4GB DB could be flled too quickly

– Wantng to store g 100,000 users in a single domainn

● Main concern is the hard limit of TDB

● LMDB chosen as a modern key-aalue store

– Used in OpenLDAP



 

 

Timeline

● LMDB was prototyped in Jan 2017

– Garming Sam

– Inspired by, but rewriten from Jakob Hrozek’s earlier prototype

● GUID-indei LDB implemented in July/August 2017

– LMDB requires a maiimum 511 byte key length

● Primary deaelopment Jan → May 2018

– Gary Lockyer



 

 

A new approach: Key/Value layer

● Jakob’s approach was to copy ldb_tdb and modify it

● Garming and I decided to instead add a key-aalue layer

– Aaoid code duplicaton

– Allow more than just LMDB (perhaps LMDBi, LeaelDB)

– Share performance and correctness improaements with ldb_tdb

– Like dbwrap in concept but specifc to LDB needs



 

 

Key-value API

● int (*store)(struct ltdb_priaate *ltdb, struct ldb_aal key, struct ldb_aal data, int fags)

● int (*delete)(struct ltdb_priaate *ltdb, struct ldb_aal key);

● int (*iterate)(struct ltdb_priaate *ltdb, ldb_ka_traaerse_fn fn, aoid *cti);

● int (*update_in_iterate)(struct ltdb_priaate *ltdb, struct ldb_aal key, struct ldb_aal key2, 

struct ldb_aal data, aoid *cti);

● int (*fetch_and_parse)(struct ltdb_priaate *ltdb, struct ldb_aal key, int (*parser)(struct 

ldb_aal key, struct ldb_aal data, aoid *priaate_data),  aoid *cti);



 

 

Locking API

● Read Locks

– int (*lock_read)(struct ldb_module *);

– int (*unlock_read)(struct ldb_module *);

● Transactons

– int (*begin_write)(struct ltdb_priaate *);

– int (*prepare_write)(struct ltdb_priaate *);

– int (*abort_write)(struct ltdb_priaate *);

– int (*finish_write)(struct ltdb_priaate *);



 

 

Meta API

● int (*error)(struct ltdb_priaate *ltdb);

● const char * (*errorstr)(struct ltdb_priaate *ltdb);

● const char * (*name)(struct ltdb_priaate *ltdb);

● bool (*has_changed)(struct ltdb_priaate *ltdb);

● bool (*transacton_actve)(struct ltdb_priaate *ltdb);



 

 

First Hurdle: Locking

● Eaen the prototype found issuesn

– Demonstrated the lack of whole-DB locking

– Fiied for Samba 4.7 last year

● Probably behind many of our replicaton issues



 

 

Second Hurdle: More Locking!

● It just wouldn’t pass make testn

– More strange failures in replicaton

● Unlock ordering issues in replicaton

– highestCommitedUSN aisible before the data

– Fiies proposed for backport to Samba 4.7 and 4.8

● Modifcaton without locks (at startup) in Samba 4.8

– DB-init tme only, but not good

– Added checks to key-aalue layer to preaent re-occurrence



 

 

Third hurdle: Maximum key size

● TDB has an unlimited key size

● LMDB is limited to 511 bytes

● LDB traditonally used the DN as the key

– Addressed by the new GUID key system



 

 

But what about indexes?

● Indei created by putng indei key and aalue in the TDB key

– @INDEX:SAMACCOUNTNAME:abartlet

● Original plan was to keep the indei in TDB

– But the more we understood the locking the less we wanted to mii TDB and LMDB 

lock ordering

● Addressed by truncatng the indei and coping with multple matches

– Ironically found and fied the 4.8 upgrade bug

– But didn’t realise the importance before eaeryone notced



 

 

And what about performance?

● Three performance tools measured so far:

– Make perftest on our Hardware test seraer

● Old AMD Athalonn

– Trafc replay tool in the cloud

– Adding users and users into groups of my workstaton



 

 

Make perfest: a small dissapointment

● 30% performance lossn

– LMDB uses write(), and a read-only mmap()

– socket_wrapper intercepts write()

● Workaround:

– Use Linui userspace namespaces instead of socket_wrapper

– Patches to upstream this stll pending

● End result is no major change, perhaps 10% slower



 

 

Trafc replay

● This is a tool to replay an amplifed anonymous trafc capture

● Similar numbers to TDB

● Need to re-try with a larger DB

– We think LMDB will show most strength at large sizes



 

 

Adding users and users into groups of my workstaton

● In a four-hour benchmark adding users and adding to one to four groups (in rotaton):

– Samba 4.4: 26,000 users

– Samba 4.5: 48,000 users

– Samba 4.6: 55,000 users

– Samba 4.7: 85,000 users

– Samba 4.8: 100,000 users

– Samba 4.9: 100,000 users (TDB)

– Samba 4.9: 45,000 users (LMDB)



 

 

Ouch.  What went wrong!

● fsync()/fdatasync()/msync() stll called

● Patches quickly writen

● New numbers:

– Samba 4.9: 100,000 users (TDB)

– Samba 4.9: 124,000 users (LMDB, no fsync())

● Lesson:

– Samba’s module stack is stll the slowest factor



 

 

TDB vs LMDB (latency vs number of users added)
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OK, so not so bad

● We addressed the customer’s desire for scale

– Currently limited to 6GB but that is compile-tme constant only

● Opens up new opportunites

● Current Status:

– Stll accessed behind sam.ldb (a TDB)

– Stll one-subtree per DB fle 



 

 

LMDB: The future

● Use the LMDB b-tree propertes in for the indei

– Allow prefi matching

– Allow <= etc

● Use sub-databases:

– Perhaps one per indei?

– Perhaps one per sub-tree?

● Use nested transactons to make the indei safer



 

 

LMDB: Sharp Edges

● Different locking behaaiour (no eiclusiae access)

● Files are sparse by default

– DB operatons can fll the fle and partton without going aia a specifc resize

● Files are not eitended automatcally

– The inaerse to the aboae, when a fle is full unlike TDB there is no auto-resize

– Requires that the admin or Samba know the size up-front

● LDB / Samba has not required this kind of planning in the past

● Need real-world eiperience



 

 

Beyond LMDB: Supportng more connectons on each DC

● Samba 4.6 remoaes single-process restrictons on NETLOGON

– Really important for 802.1i backed authentcaton

● Samba 4.7 supports a mult-process LDAP seraer

– Actually reduces number of connectons you can ft in memory (oops)

● Samba 4.8 adds a prefork mode for LDAP

– Great for a big AD DC with many, many clients

● Samba 4.9: should we make prefork the default?

– Howeaer NETLOGON would be single-process in that mode (ouch)



 

 

New trafc_replay Performance tool

● We can now record and re-play trafc

– Recreate a real-world load

– Amplify the trafc

● Comparatae testng now possible between Windows and Samba

● Samba is now within about 50% of Windows performance

– Against a single-CPU target system 

– Allows us to slow both down enough for the trafc_replay to saturate it



 

 

Performance
against Samba and
Windows

● 1 aCPU

● Catalyst Cloud

● After 35i speed the tool

eihausts itself

● So this is not the upper bound



 

 

Wanted: More network captures

● We need more sample of network trafc

– Anonymised with the trafc_summary.pl script

● Ideally with permission to publish (eg the Samba wiki)

● Diaerse real world loads will aaoid skewed perf testng



 

 

make perfest
graphs
 - April 2016
to Dec 2017



 

 

Catalyst development beyond performance

● Encrypted secrets (4.8)

– Use a local fle key to encrypt DB secrets

–  (could then be network-deployed)

● Unii-compatble passwords (4.7)

– Store and retrieae sha256/sha512 crypt() 

passwords to sync with other systems

● Audit Logging (4.7 and 4.9)

– Output audit logs into JSON

● RODC support (4.7)

– This was eiperimental untl now

● DNS Zone scaaenging (for 4.9)

● Demote cleans up own DNS records (4.9)

● Fine Grained Password Policy (4.9)

● Domain Backup (for 4.9)

● Domain Rename (for 4.9)



 

 

Catalyst's Open Source Technologies – Questons?

Want to work with my team at Catalyst to make your Samba scale?  - talk to me in the hallway trackn
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