

HARDWIRED: AN SMB OFFLOAD ENGINE

Christopher R. Hertel Samba Team Sambaxp - Virtually Göttingen -May, 2020

Quick Introductions

Copyright S 2020 by Christopher R. Hertel

Introductorationaryesquenessesism

Me: Samba Team Elder Data Storage Geek Writer / Developer

The opinions expressed are my own and not necessarily those of:

- My spouse, my children, my dog, my colleagues,
- my spirit familiar, the Internet Voices,
- the monster under the floor,
- the basement mice, etc.

Introductions

ACK: The work I am presenting parallels some ongoing work by others. Kudos to them. I'm not trying to compete. This is just what intrigues me.

SmartNICs

It's a network computer on a card.

• Sorta like a directly attached Raspberry Pi on Steroids with a Jet Engine and a sugar buzz.

Copyright S 2020 by Christopher R. Hertel

SmartNICs

"Storage is the 'Killer App' for SmartNICs."

Hmmm... Key Hmmm... Key Hmmm...

Copyright O 2020 by Christopher R. Hertel

SMB Offload

Copyright O 2020 by Christopher R. Hertel

SMB Offload

- Marshalling and Unmarshalling
 - $\circ~$ Packing and unpacking of packets
 - Compression / Decompression
- Host-provided State
 - Signing and Sealing keys
- Zero Copy I/O
 - Fast path for Read, Write, and Flush
- SMB2, SMB3, <u>no SMB1</u>

SMB Offload

How would such a thing fit into an SMB2/SMB3 implementation?

- → Semantic Layer: SMB Server
 ♦ Semantics and Metadata
- → Fuzzy Layer: Driver/Library
 ♦ Offload Engine Interface
- → Syntactic Layer: Offload
 ♦ In-Memory Layout

Network Layer: Transport
 Wire Format

The Semantic Layer

... is where the serious work gets done:

- Manage Windows FS Semantics
 - Locking, Identity, EAs, etc.
- Local Filesystem Interface
 - E.g.: POSIX Layer
 - Sync'd Access (Local, NFS, Object)
- Metadata Management
 - ACLs, Attributes
- Cluster Support

The Semantic Layer

... is not part of the offload engine.

- Must keep it in mind, though.
- The API needs to be useful.
- Different implementations should be able run over the same API.
- Even run different implementations in parallel.

The Fuzzy Layer

...is not (yet) well defined. It provides the interface between the Server and the Offload Engine.

- Shared State:
 - Encryption keys.
 - Sessions, Tree Connects, and Open Files.
- Communicate with the NIC.
 Tell it what to do.

The Fuzzy Layer ...is not (yet) well defined. Here's what we need:

- A rational, well documented API.
- A stackable low-level for adding new dialects and capabilities.
- State management.
- Device Driver / Library / Toolkit?

The SmartNIC Layer

... is the *raison d'etre* for this effort.

- Offload encryption & compression.
- Handle message syntax errors.
 - Support SMB3 Multichannel.
- Support multiple transports.
- Hide those details from the upper levels of the stack.

Yet Another Project

Copyright S 2020 by Christopher R. Hertel

Yet Another Project

Zambezi

• https://gitlab.com/ubiqx/zambezi

LGPL
 Only code
 that's ready
 ...and excessively
 well documented.

For convenience, messages are listed in six debatably semi-logical categories:

Managing Connections	Share Access	Open/Close, Lock/Unlock
 NEGOTIATE (0x0000) SESSION_SETUP (0x0001) LOGOFF (0x0002) ECHO (0x000D) 	 TREE_CONNECT (0x0003) TREE_DISCONNECT (0x0004) 	 CREATE (0x0005) CLOSE (0x0006) LOCK (0x000A) OPLOCK_BREAK (0x0012)
Fundamental I/O READ (0x0008) WRITE (0x0009) FLUSH (0x0007)	Metadata Query and Set • QUERY_DIRECTORY (0x000E) • CHANGE_NOTIFY (0x000F) • IOCTL (0x000B) • QUERY_INFO (0x0010) • SET_INFO (0x0011)	Odds and Ends • CANCEL (0x000C) • SMB2 Error Response

Several have the same basic format:
typedef struct
{
 uint16_t StructureSize;
 uint8_t Reserved[2];
 smb2_BaseMsg;

- LOGOFF Request/Response
- TREE_DISCONNECT Request/Response
- ECHO Request/Response

- CANCEL Request
- LOCK Response
- FLUSH Response

Parse/pack code for all 9 types is complete.

Copyright ⁽¹⁾ 2020 by Christopher R. Hertel

Consider SMB2 Echo

- In SMB2/3, Echo is only valid within a Session.
 - No Payload
 - No Repeats

- Does it ever need to leave the NIC?
 - Is the SMB2 Server still Running?
 - $\circ~$ Is it still serving the Session?
- The SMB2 Server must respond to the Offload with A-OK.

Where else might this be useful?

- Software Defined Network Devices
- Proxy and Cache Servers
- WAN Accelerators
- Remote Access Portals

Goals:

- \star Git 'er done.
- \star Work with the SNIA
 - Standardize the API
 - Fork a reference implementation under an additional license
- \star Partner with others to
 - implement on SmartNICs
- \star Find new and interesting uses

The End

Copyright S 2020 by Christopher R. Hertel

