5

Samba, Quo Vadis?

Experimenting with languages the Cool Kids™ use
Kai Blin
Samba Team

SambaXxP 2017

2017-05-03 ‘5>H m E H

Intro

+ M.Sc. in Computational Biology

+ Ph.D. in Microbiology v

- Samba Team member

<5> 2/45

Overview

-+ Programming languages

3/45

Overview

-+ Programming languages
+ Hello, world!

4/45

Overview

-+ Programming languages
- Hello, wertd Kerberos!

5/45

Overview

-+ Programming languages
- Hello, wertd Kerberos!

+ Implementing it

6/45

Overview

-+ Programming languages
- Hello, wertd Kerberos!

+ Implementing it

- Conclusions

7145

Programming Languages

Why?

"The [Samba] project does need to consider the use of other, safer languages."
- Jeremy Allison, last year

<5> 9/45

Why?

No, honestly, why?

- Avoid whole classes of bugs
- New languages, new features

- It's getting harder to find C programmers

= 10/45

Currently

- 80% C, 7% Python (2)
+ ~ 2 million lines of code
+ ~15-20 regular contributors

11/45

Languages

Cool Kids™ approved

- Go
- Rust
+ Python 3

12/45

Go

+ Announced 2009
+ C-like, compiled language
+ Concurrency core part of the language

- Package management with go get <package>
+ Programmers call themselves "Gophers"

13/45

Go

Hello, World!

45’ 14/45

Rust

- Announced 2010

+ C-like, compiled language

- Focus on memory safety

- Package management with cargo

- Still a bit of a moving target

+ Programmers call themselves "Rustacians”

15/45

Rust
Hello, World!

fn main() {
println!("Hello, world!");

}

45> 16/45

Python 3

+ Announced in 2008
- dynamically-typed, interpreted language
+ Focus on simplicity and readability

- Package management with pip install <package>
+ Mainly for comparison

+ Programmers call themselves "Pythonistas"

17/45

Python 3

Hello, World!

print("Hello, world!")
Or maybe

def main():
print("Hello, world!")

if name == " main ":
main()

45> 18/45

Hello, Kerberos!

Introducing the example project.

KKDCP

Kerberos Key Distribution Center Proxy
Proxy Kerberos TGT and service ticket requests via HTTPS

— KRB_AS_REQ-»

Kerberos < KRE_AS REP—
messages in
-|-|.55E¢‘I.III'E
channe —KRB_TGS_REQ» .
-) - o S UA
«KRB TGS REP— s
S X
KRB CHG
Client Server __PWD_REQ_"' KDC
KRB_CHG
_PWD_REP

20/45

KKDCP

+ Client sends ASN.1-encoded HTTPS POST request to proxy
+ Proxy decodes

- extracts Kerberos ASN.1 request

+ Proxy sends krb request to KDC

+ KDC responds

+ Proxy encodes response

+ Proxy replies to client

21/45

Existing implementations

- MS-KKDCP server
+ kdcproxy

22/45

Plan

- Write an implementation in all three languages
- Validate against reference
Compare on both implementation ease and performance

23/45

Implementing it

Languages

- Go: 1.8
- Rust: 1.16.0
+ Python 3.5.2

25/45

Environment

- Server: Active Directory KDC (Samba or MS)
- Client: MS Windows
- Client: MIT Kerberos (kinit)

26/45

Challenges

+ How to set up KKDCP with Windows
+ Use kdcproxy as reference
+ Only use MIT Kerberos kinit

27/45

Challenges

Part Il

- Ubuntu ships MIT krb5 1.13.2
- KKDCP seems to fail on 1.13.2, reason not obvious from logs

-+ Use 1.16 pre-release instead
-+ Doesn't like HTTP, use HTTPS

28/45

New Reference: kdcproxy

- Created by RedHat (https://github.com/latchset/kdcproxy)
+ Written in Python (v2 compatible)
- WSGI app

29/45

https://github.com/latchset/kdcproxy

Set-Up

Server

- WSGI app in gunicorn
- Use Nginx for HTTPS

30/45

Set-Up

Server

server {
listen 443;
include ssl params;

location /RhKdcProxy {
proxy pass http://127.0.0.1:8123/;
include proxy params;

gunicorn -w4 kdcproxy:application -b 127.0.0.1:8123

<55’ 31/45

Set-Up

Client

[realms]
DEMO.KBLIN.ORG = {
http anchors = FILE:/etc/ssl/certs/kdcproxy.pem
kdc = https://kdcproxy.demo.kblin.org/RhKdcProxy
admin server = kdc.demo.kblin.org

32/45

Demo Time!

as root
./switch.sh rh

as user
./run_demo.sh

g5 33/45

Python 3

- Uses asyncio/aiohttp

+ Uses new async/await keywords

+ Uses type hints

+ Not compatible with Python 2.x

- pyasn1 for ASN.1 handling

- See full code at https://github.com/kblin/py3-kkdcp

34/45

https://github.com/kblin/py3-kkdcp

Python 3

async def handle kkdcp(request):
data = await request.read()
proxy request = codec.decode(data)
loop = asyncio.get event loop()

krb5 response = await asyncio.wait for(
forward kerberos(proxy request.message, loop=loop),
timeout=15, loop=Lloop)

return web.Response(body=codec.encode(krb5 response),
content type="application/kerberos")

app = web.Application()
app.router.add post("/", handle kkdcp)

g5 35/45

Python 3

async def forward kerberos(data: bytes, loop=None) -> bytes:
reader, writer = await asyncio.open connection(
‘kdc.demo.kblin.org', 88, loop=1loop)
writer.write(data)
resp = await reader.read()
return resp

36/45

Demo Time!

as root
./switch.sh py3

as user
./run_demo.sh

g5 37/45

Go

- Apart from the HTTP handler dispatch, no attempt at async code
+ Uses stdlib ASN.1 encoder

+ No error handling in code samples

- See full code at https://github.com/kblin/go-kkdcp

38/45

https://github.com/kblin/go-kkdcp

Go

func HandleKkdcp(w http.ResponseWriter, req *http.Request) {

w.Header() .Set("Content-Type", "application/kerberos")
defer req.Body.Close()

data, := ioutil.ReadAll(req.Body)
proxy request, := codec.Decode(data)

krb5 response, := ForwardKerberos(proxy request.Message)
reply, := codec.Encode(krb5 response)

w.WriteHeader (http.StatusOK)
w.Write(reply)
}

func main() {
router := mux.NewRouter()
router.HandlerFunc("/", HandleKkdcp).Methods("POST")
log.Fatal(http.ListenAndServe(":8124", router))

}

g

39/45

Go

func ForwardKerberos(data []byte) (resp []byte, err error) {

conn, := net.Dial("tcp", "kdc.demo.kblin.org:88")
defer conn.Close()

conn.Write(data)
resp, = ioutil.ReadAll(conn)

return resp, nil

40/45

Demo Time!

as root
./switch.sh go

as user
./run_demo.sh

15> 41/45

Rust

- Documentation missing
+ "Just use the nightly version of the language"
+ Could not find working ASN.1 library.

- S0, no demo

42/45

Conclusions

Conclusions

+ Python 3 and Go both worth investigating further
+ Rust not quite ready for prime time yet
+ Would probably pick Go myself

44/45

Thank you

