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Samba and the road to 100,000 users



 

 

Andrew Bartlet

● Samba developer since 2001

● Working on the AD DC since soon after the start of the 4.0 branch, since 2004!

– Driven to work on the AD DC after being a 

high school Systems Administrator

● Working for Catalyst in Wellington since 2013

– Now leading a team of 5 Catalyst Samba Engineers

● These views are mine alone

● Please ask questions during the talk



 

 

Samba is getting faster as an AD DC

● In a two-hour benchmark adding users and adding to four groups:

– Samba 4.4: 26,000 users

– Samba 4.5: 48,000 users

– Samba 4.6: 55,000 users

– Samba 4.7: 85,000 users!

● The first 55,000 added in just 50mins

● This talk is about how we got there



 

 

Still a very long way to go

● Every user account implies a computer account also

– Computers are domain joined and get ‘user’ objects

● Samba 3.x was deployed widely using OpenLDAP for the hard work

– OpenLDAP scales really well

– We need to match that scale to upgrade those domains

● We really want to remove barriers, both real and perceived to Samba’s use

– Not reasonable to ask that Samba be deployed on the very edge of its capability



 

 

A year of incredible progress

● We have been told Samba’s DB does not scale before

– Nadezhda Ivanova presented the OpenLDAP Backend on that basis

● This is the year clients asked Catalyst to address Samba scale and performance

● A tale of small changes brining big results

– Boil the ketle, not the ocean!



 

 

● Once we started looking at performance, we quickly found things to fix

● Performance issues now the biggest area of our work!

– Customers deploying Samba at scale

– Customers growing and very keen to keep Samba

● Very glad to be the backbone of some multi-national corporate networks!

Rebuilding Samba for performance



 

 

Replication as a performance botleneck

● So what if it takes time to add 10,000 users or so?

– Companies can’t hire that fast anyway

● Biggest botleneck is adding new DCs to Samba domains

– e. g. opening a new office

● Growing pains: So many litle inefficiencies

– Everything is fast at < 5,000 users!

– TODO: This loop is O(n^2)



 

 

The problem at the start 
(samba-tool domain join of a large domain)



 

 

Linked atribute code had the perfect storm!

● Linked atributes are things like ‘member’ of a group.

● Each is replicated individually as a source / destination GUID pair

– 1000 user means 100 pairs

● Before the new KCC, we had dense mesh replication

– Changes broadcast to every DC



 

 

Over-replication of links (uptodateness ignored).  

● Any change to any link caused all links to be replicated

– To every partner (possibly all DCs)

– And then replicated to each partner DC again!

● This could be 5000 link values for a large group!

– Created load like each DC doing a join every time some groups changed

● This one issue make the other issues really prominent in multi-DC deployments

– This changed the problems from bad to crippling

● Sadly we noticed this last!



 

 

Optimising the wrong things

● repl_meta_data has this lovely abstraction on link values

– get_parsed_dns()

– parsed_dn_find()

● A bisection search sounds good

– Only useful if the data is sorted once, queried often

– Instead the data was parsed, sorted and queried every time

● The most expensive cost was the parsing!



 

 

To find group members to support add/delete/modfy

● Previously, we had to parse every link

– member: <GUID=a57fda98-631c-4897-8b2d-e3d8517d44f7>;

<RMD_ADDTIME=1312841678300 00000>;

<RMD_CHANGETIME=131284167830000000>;<RMD_FLAGS=0>;

<RMD_INVOCID=a0a5a67 8-5114-4e30-bede-691df820b485>;

<RMD_LOCAL_USN=3723>;<RMD_ORIGINATING_USN=3723 >;<RMD_VERSION=0>;

<SID=S-1-5-21-734207269-1740946421-976543298-1103>;

CN=testallowed,CN=Users,DC=samba,DC=example,DC=com

● Now we sort by GUID, and so can do a binary search



 

 

DN Parsing is still too costly

● Samba and LDB still parse DNs a lot

– But without the previous fix, it was a dominant factor

● Parsing <SID=S-1-2-3-4> and <GUID=395643e5-35fb-442e-8c72-f4219e8c3070>

– We now use the stack to parse these, not talloc memory

● libndr would allocate 1024 bytes for every context

– So we added a variant that was told to use a fixed, passed-in buffer

● Inefficient sscanf() based parsing replaced with stricter direct C parser. 



 

 

Checking for unique values (in a unique list)

● ldb_tdb needs to check that an ldb atribute value is not a duplicate

– Currently this is an O(n^2) check

● But the repl_meta_data module has already prepared a sorted unique list

● We extended the meaning of LDB_FLAG_INTERNAL_DISABLE_SINGLE_VALUE_CHECK

● Douglas is currently working on improving the general case



 

 

How can GUID_cmp() be a hotspot?

● Linked lists are not cheap at scale

– O(n) search time

– Worse still if you search it n times

● The issue isn’t the hot function, it is the caller

– repl_meta_data was storing up the link changes to apply at the end of the transaction

● Code changed to apply changes right away, and avoid the list



 

 

talloc_free() is not free

● I’ve spent quite some time making talloc_free() faster

● But the biggest gains came from not calling it

– Once we sorted the link list, no need to allocate memory for every item



 

 

Next barrier to scale: Adding users

● The index code would check to see if the user:

–  just having been added

–  was already in the index.

● The index is currently an unsorted list of strings

– so this was an O(n) search for each new user

● Additionally, the index code inefficiently allocated memory

– We now do not allocate each string, just the entire index and use pointers



 

 

Before optimisation:
Samba 4.4

● Adding a user and adding 

that user to four groups in 

a two-hour limit



 

 

Much improved scale factors: two-hour limit
Samba 4.5 Samba 4.7



 

 

Another Issue: Search performance

● Some clients hit Samba really hard for search

● Zarafa came up on the list recently 



 

 

ltdb_search now defers allocation

● Unpack of the result is as constant pointers to the buffer

– Only allocate the buffer, and the array for any multi-valued atributes

● It is cheaper to copy the wanted results!

● Much less complex than Mathieu’s approach of filtering at the unpack!



 

 

Too much locking

● A bug in the ldb_tdb search code meant we did walking lock during the traverse

● Very high kernel interaction for the fcntl() calls



 

 

Not enough (LDAP) processes

● Samba’s LDAP server is a single process

● Historical decision

– we just did not expect it to mater

● Will soon change to multi-process by default

– Slower for serial bind/search/drop due to fork() cost

– Faster for 5 or more concurrent operations



 

 

Poor un-indexed code made the index look good!

● Actually our ldb_tdb index scheme is very poor

● It only looked good when the unindexed code was hobbled!

● We need to re-design it to be faster to add/modify and intersect

– Currently it is unordered strings that are not even the DB keys!
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samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_01_03_adding_users_3000(ad_dc_ntvfs )

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_pack_repl_sample(ad_dc_ntvfs)
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_10_01_unindexed_search_full_dc(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_07_01_adding_users_afte r_links_5000(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_10_02_indexed_search_full_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_01_12_indexed_search_3k_users(ad_dc_ntvfs )

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_00_01_adding_users_1000(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_00_00_join_empty_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_21_02_dele te_users_4000_lightly_linked(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_05_01_adding_users_afte r_links_4000(ad_dc_ntvfs )

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_00_10_complex_search_1k_users(ad_dc_ntvfs )

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_00_00_do_nothing(ad_dc_ntvfs )
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_20_01_dele te_50_groups(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_06_01_re link_use rs_1000(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_06_06_link_users_again_4000_few_groups(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_04_02_remove_some _links_2000(ad_dc_ntvfs )
samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_01_02_adding_users_2000_ldif(ad_dc_ntvfs )samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_00_01_adding_users_1000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_01_02_link_users_2000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_03_01_link_users_again_1000_few_groups(ad_dc_ntvfs )

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_unpack_big_sd(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_01_01_link_users_1000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_02_10_join_partia lly_linked_dc(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_04_03_remove_some _links_3000(ad_dc_ntvfs )
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_00_03_adding_users_3000(ad_dc_ntvfs)

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_unpack_little_sd(ad_dc_ntvfs )

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_02_02_link_users_2000(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_08_02_link_random_users_100_groups(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_01_13_member_search_3k_users (ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_00_11_uninde xed_search_1k_use rs (ad_dc_ntvfs)samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_00_10_join_unlinked_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_multi_bind.ntlm.python(ad_dc_ntvfs ).__main__.Use rTes ts .te s t_1000_binds(ad_dc_ntvfs )
samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_00_12_indexed_search_1k_users(ad_dc_ntvfs )

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_01_11_uninde xed_search_3k_use rs (ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_00_00_do_nothing(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_08_01_link_random_users_100_groups(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_02_02_link_users_again_2000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_21_01_dele te_users_5000_lightly_linked(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_02_12_indexed_search_partia lly_linked_dc(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_01_03_link_users_3000(ad_dc_ntvfs)
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_06_02_link_users_2000(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_03_11_uninde xed_search_linked_users(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_00_02_adding_users_2000(ad_dc_ntvfs)

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_pack_big_sd(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_21_03_dele te_users_3000(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_00_13_member_search_1k_users (ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_06_03_link_users_3000(ad_dc_ntvfs)
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_23_01_dele te_users_afte r_groups_2000(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_00_12_indexed_search_3k_users (ad_dc_ntvfs)

samba4.ldap.ad_dc_multi_bind.ntlm.python(ad_dc_ntvfs ).__main__.Use rTes ts .te s t_1000_concurrent_subtre e_search(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_02_03_link_users_again_3000(ad_dc_ntvfs)
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_06_05_link_users_again_4000(ad_dc_ntvfs)

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_pack_little_sd(ad_dc_ntvfs)samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_unpack_repl_sample(ad_dc_ntvfs )

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_00_00_do_nothing(ad_dc_ntvfs )

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_pack_unpack_big_sd(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_04_01_remove_some _links_1000(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_24_02_join_afte r_cleanup(ad_dc_ntvfs)samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_03_03_link_users_again_3000_few_groups(ad_dc_ntvfs )samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_03_10_complex_search_linked_users(ad_dc_ntvfs )

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_02_01_link_users_1000(ad_dc_ntvfs )

samba4.ldap.ad_dc_multi_bind.ntlm.python(ad_dc_ntvfs ).__main__.Use rTes ts .te s t_1000_concurrent_binds(ad_dc_ntvfs)
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_22_01_dele te_all_groups(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_23_00_dele te_users_afte r_groups_1000(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_06_04_link_users_4000(ad_dc_ntvfs)

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_pack_unpack_little_sd(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_03_13_member_search_linked_users(ad_dc_ntvfs )

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_03_12_indexed_search_linked_users(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_02_03_link_users_3000(ad_dc_ntvfs )

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_01_10_complex_search_3k_users(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_00_11_unindexed_search_3k_users(ad_dc_ntvfs )samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_02_11_unindexed_search_partia lly_linked_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_02_01_link_users_again_1000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_03_02_link_users_again_2000_few_groups(ad_dc_ntvfs )

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs ).__main__.UserTes ts .te s t_11_02_join_full_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_multi_bind.ntlm.python(ad_dc_ntvfs ).__main__.Use rTes ts .te s t_1000_concurrent_unindexed_search(ad_dc_ntvfs)



 

 

The good news

● Samba AD s getting faster, and each release is beter

● We now monitor performance (see graph next slide)

● Each issue was solved individually  

● Performance fixes build on each other



 

 

Performance
graphs from
March 2016
- Search
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graphs from
March 2016
- Join
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graphs from
March 2016
- Add user
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graphs from
March 2016
- Delete user



 

 

Performance
graphs from
March 2016
- linked atrs



 

 

Samba 4.7 so far!

● Over a 60% drop in time for 

some tests



 

 

Supporting more users on each DC

● Hoping to avoid needing to run extra DCs to spread the load  

● Samba 4.6 removes single-process restrictions on NETLOGON

– Really important for 802.1x backed wireless authentication

– Unbreak the WiFi and watch the DC melt instead :-(

● Samba 4.7 will support a multi-process LDAP server

– Easy to turn on in the code

– Currently fork() and cleanup for exit() costs are too high



 

 

Should we still rewrite?

● A rewrites or rebase onto (say) OpenLDAP always looks atractive

● Samba4 was such a thing for the fileserver!

● I think we learnt that lesson, and have seen what it took to do MIT Kerberos

● I would rather still carve these issues off one-at-a-time

– Bisectable changes are good!



 

 

The future for performance 

● Remove other O(n) and O(n2) operations

– Multi-valued atribute handling

● Beter index handling

– Our current index code is still very much a first pass

– Proposal to move to a GUID based index

● Reaching the limits for the current DB:

– memcpy() and memmove() from ldb_tdb transactions are 20% of the time



 

 

Lightening Memory-mapped Database from Symas

● The company behind OpenLDAP

● Built by Howard Chu to make OpenLDAP fly

● LMDB backend prototyped by Jakub Hrozek of Red Hat for sssd

– Appears to be 3 times faster for some operations

● Garming Sam has been working on reimplementation

– Preparing it in a way that could be submited

– Based more tightly on the TDB LDB backend

● Still very much a WIP, but it successfully ran provision and tests!



 

 

Maintaining Performance and scale

● Large scale operation needs to be part of Samba’s autobuild

● Project to develop a new performance metric for Samba domains

– Currently under development

● Ongoing graphing of performance measurements

– Try to spot regressions before they get too old



 

 

Help wanted!

● For the performance metric tool I need to calibrate it

● I need volunteers running AD willing to run a tshark script

– Windows or Samba AD welcome

– What does your busy hour look like?

– What is the patern of requests?

● E-mail abartlet@samba.org if you can help

mailto:abartlet@samba.org


 

 

Are we at 100k users?

● No

● But we now how to get there



 

 

Recap: Improvements in Samba 4.5

● Samba 4.5 addressed major issues with the client-side of replication

– 3 of the 4 O(n2) loops removed

– Critical as these were under the transaction lock

● Turned on graph (rather than all to all) replication by default

– Previously every Samba DC would notify every other Samba DC about changes

– This could trigger a short replication storm



 

 

Recap: Some improvement in 4.6

● Samba 4.6 will avoid over-replication of links

– When replicating from server A, we also ask is what changes it got from B

– That means we don’t need to ask B for changes directly

– We did this for atributes, but didn’t do this for links previously

● Faster parsing of links also improved performance around 20% for some tasks

– Avoid sscanf() and malloc()



 

 

Recap: More improvements for 4.7

● Correct global locking will make un-indexed searches much faster

● Multi-process support will allow all CPUs to be used

● GUID-based index to be explored





 

 

Catalyst's Open Source Technologies – Questions?
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