

Presented by Andrew Bartlet
Samba Team - Catalyst // SambaXP 2017

Samba and the road to 100,000 users

Andrew Bartlet

● Samba developer since 2001

● Working on the AD DC since soon after the start of the 4.0 branch, since 2004!

– Driven to work on the AD DC after being a

high school Systems Administrator

● Working for Catalyst in Wellington since 2013

– Now leading a team of 5 Catalyst Samba Engineers

● These views are mine alone

● Please ask questions during the talk

Samba is getting faster as an AD DC

● In a two-hour benchmark adding users and adding to four groups:

– Samba 4.4: 26,000 users

– Samba 4.5: 48,000 users

– Samba 4.6: 55,000 users

– Samba 4.7: 85,000 users!

● The first 55,000 added in just 50mins

● This talk is about how we got there

Still a very long way to go

● Every user account implies a computer account also

– Computers are domain joined and get ‘user’ objects

● Samba 3.x was deployed widely using OpenLDAP for the hard work

– OpenLDAP scales really well

– We need to match that scale to upgrade those domains

● We really want to remove barriers, both real and perceived to Samba’s use

– Not reasonable to ask that Samba be deployed on the very edge of its capability

A year of incredible progress

● We have been told Samba’s DB does not scale before

– Nadezhda Ivanova presented the OpenLDAP Backend on that basis

● This is the year clients asked Catalyst to address Samba scale and performance

● A tale of small changes brining big results

– Boil the ketle, not the ocean!

● Once we started looking at performance, we quickly found things to fix

● Performance issues now the biggest area of our work!

– Customers deploying Samba at scale

– Customers growing and very keen to keep Samba

● Very glad to be the backbone of some multi-national corporate networks!

Rebuilding Samba for performance

Replication as a performance botleneck

● So what if it takes time to add 10,000 users or so?

– Companies can’t hire that fast anyway

● Biggest botleneck is adding new DCs to Samba domains

– e. g. opening a new office

● Growing pains: So many litle inefficiencies

– Everything is fast at < 5,000 users!

– TODO: This loop is O(n^2)

The problem at the start
(samba-tool domain join of a large domain)

Linked atribute code had the perfect storm!

● Linked atributes are things like ‘member’ of a group.

● Each is replicated individually as a source / destination GUID pair

– 1000 user means 100 pairs

● Before the new KCC, we had dense mesh replication

– Changes broadcast to every DC

Over-replication of links (uptodateness ignored).

● Any change to any link caused all links to be replicated

– To every partner (possibly all DCs)

– And then replicated to each partner DC again!

● This could be 5000 link values for a large group!

– Created load like each DC doing a join every time some groups changed

● This one issue make the other issues really prominent in multi-DC deployments

– This changed the problems from bad to crippling

● Sadly we noticed this last!

Optimising the wrong things

● repl_meta_data has this lovely abstraction on link values

– get_parsed_dns()

– parsed_dn_find()

● A bisection search sounds good

– Only useful if the data is sorted once, queried often

– Instead the data was parsed, sorted and queried every time

● The most expensive cost was the parsing!

To find group members to support add/delete/modfy

● Previously, we had to parse every link

– member: <GUID=a57fda98-631c-4897-8b2d-e3d8517d44f7>;

<RMD_ADDTIME=1312841678300 00000>;

<RMD_CHANGETIME=131284167830000000>;<RMD_FLAGS=0>;

<RMD_INVOCID=a0a5a67 8-5114-4e30-bede-691df820b485>;

<RMD_LOCAL_USN=3723>;<RMD_ORIGINATING_USN=3723 >;<RMD_VERSION=0>;

<SID=S-1-5-21-734207269-1740946421-976543298-1103>;

CN=testallowed,CN=Users,DC=samba,DC=example,DC=com

● Now we sort by GUID, and so can do a binary search

DN Parsing is still too costly

● Samba and LDB still parse DNs a lot

– But without the previous fix, it was a dominant factor

● Parsing <SID=S-1-2-3-4> and <GUID=395643e5-35fb-442e-8c72-f4219e8c3070>

– We now use the stack to parse these, not talloc memory

● libndr would allocate 1024 bytes for every context

– So we added a variant that was told to use a fixed, passed-in buffer

● Inefficient sscanf() based parsing replaced with stricter direct C parser.

Checking for unique values (in a unique list)

● ldb_tdb needs to check that an ldb atribute value is not a duplicate

– Currently this is an O(n^2) check

● But the repl_meta_data module has already prepared a sorted unique list

● We extended the meaning of LDB_FLAG_INTERNAL_DISABLE_SINGLE_VALUE_CHECK

● Douglas is currently working on improving the general case

How can GUID_cmp() be a hotspot?

● Linked lists are not cheap at scale

– O(n) search time

– Worse still if you search it n times

● The issue isn’t the hot function, it is the caller

– repl_meta_data was storing up the link changes to apply at the end of the transaction

● Code changed to apply changes right away, and avoid the list

talloc_free() is not free

● I’ve spent quite some time making talloc_free() faster

● But the biggest gains came from not calling it

– Once we sorted the link list, no need to allocate memory for every item

Next barrier to scale: Adding users

● The index code would check to see if the user:

– just having been added

– was already in the index.

● The index is currently an unsorted list of strings

– so this was an O(n) search for each new user

● Additionally, the index code inefficiently allocated memory

– We now do not allocate each string, just the entire index and use pointers

Before optimisation:
Samba 4.4

● Adding a user and adding

that user to four groups in

a two-hour limit

Much improved scale factors: two-hour limit
Samba 4.5 Samba 4.7

Another Issue: Search performance

● Some clients hit Samba really hard for search

● Zarafa came up on the list recently

ltdb_search now defers allocation

● Unpack of the result is as constant pointers to the buffer

– Only allocate the buffer, and the array for any multi-valued atributes

● It is cheaper to copy the wanted results!

● Much less complex than Mathieu’s approach of filtering at the unpack!

Too much locking

● A bug in the ldb_tdb search code meant we did walking lock during the traverse

● Very high kernel interaction for the fcntl() calls

Not enough (LDAP) processes

● Samba’s LDAP server is a single process

● Historical decision

– we just did not expect it to mater

● Will soon change to multi-process by default

– Slower for serial bind/search/drop due to fork() cost

– Faster for 5 or more concurrent operations

Poor un-indexed code made the index look good!

● Actually our ldb_tdb index scheme is very poor

● It only looked good when the unindexed code was hobbled!

● We need to re-design it to be faster to add/modify and intersect

– Currently it is unordered strings that are not even the DB keys!

8edb99e perf-tes t: Add tes ts running a la rge search in paralle l

c6a5965 tdb: Im prove debugging when the allrecord lock fa ils to upgrade

b6b0d92 Us e tdb_allrecord_lock not tdb_trans action_lock in tdb_traverse{ ...

9baf367 ldb_tdb: Ens ure we corre ctly decrement ltdb->read_lock_count

b8c4d2a ldap: Run the LDAP se rver with the de fault (typically s tandard) ...

0

50

100

150

200

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_01_03_adding_users_3000(ad_dc_ntvfs)

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_pack_repl_sample(ad_dc_ntvfs)
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_10_01_unindexed_search_full_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_07_01_adding_users_afte r_links_5000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_10_02_indexed_search_full_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_01_12_indexed_search_3k_users(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_00_01_adding_users_1000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_00_00_join_empty_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_21_02_dele te_users_4000_lightly_linked(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_05_01_adding_users_afte r_links_4000(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_00_10_complex_search_1k_users(ad_dc_ntvfs)

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_00_00_do_nothing(ad_dc_ntvfs)
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_20_01_dele te_50_groups(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_06_01_re link_use rs_1000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_06_06_link_users_again_4000_few_groups(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_04_02_remove_some _links_2000(ad_dc_ntvfs)
samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_01_02_adding_users_2000_ldif(ad_dc_ntvfs)samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_00_01_adding_users_1000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_01_02_link_users_2000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_03_01_link_users_again_1000_few_groups(ad_dc_ntvfs)

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_unpack_big_sd(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_01_01_link_users_1000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_02_10_join_partia lly_linked_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_04_03_remove_some _links_3000(ad_dc_ntvfs)
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_00_03_adding_users_3000(ad_dc_ntvfs)

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_unpack_little_sd(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_02_02_link_users_2000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_08_02_link_random_users_100_groups(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_01_13_member_search_3k_users (ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_00_11_uninde xed_search_1k_use rs (ad_dc_ntvfs)samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_00_10_join_unlinked_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_multi_bind.ntlm.python(ad_dc_ntvfs).__main__.Use rTes ts .te s t_1000_binds(ad_dc_ntvfs)
samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_00_12_indexed_search_1k_users(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_01_11_uninde xed_search_3k_use rs (ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_00_00_do_nothing(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_08_01_link_random_users_100_groups(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_02_02_link_users_again_2000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_21_01_dele te_users_5000_lightly_linked(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_02_12_indexed_search_partia lly_linked_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_01_03_link_users_3000(ad_dc_ntvfs)
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_06_02_link_users_2000(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_03_11_uninde xed_search_linked_users(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_00_02_adding_users_2000(ad_dc_ntvfs)

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_pack_big_sd(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_21_03_dele te_users_3000(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_00_13_member_search_1k_users (ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_06_03_link_users_3000(ad_dc_ntvfs)
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_23_01_dele te_users_afte r_groups_2000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_00_12_indexed_search_3k_users (ad_dc_ntvfs)

samba4.ldap.ad_dc_multi_bind.ntlm.python(ad_dc_ntvfs).__main__.Use rTes ts .te s t_1000_concurrent_subtre e_search(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_02_03_link_users_again_3000(ad_dc_ntvfs)
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_06_05_link_users_again_4000(ad_dc_ntvfs)

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_pack_little_sd(ad_dc_ntvfs)samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_unpack_repl_sample(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_00_00_do_nothing(ad_dc_ntvfs)

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_pack_unpack_big_sd(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_04_01_remove_some _links_1000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_24_02_join_afte r_cleanup(ad_dc_ntvfs)samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_03_03_link_users_again_3000_few_groups(ad_dc_ntvfs)samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_03_10_complex_search_linked_users(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_02_01_link_users_1000(ad_dc_ntvfs)

samba4.ldap.ad_dc_multi_bind.ntlm.python(ad_dc_ntvfs).__main__.Use rTes ts .te s t_1000_concurrent_binds(ad_dc_ntvfs)
samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_22_01_dele te_all_groups(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_23_00_dele te_users_afte r_groups_1000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_06_04_link_users_4000(ad_dc_ntvfs)

samba4.ndr_pack_performance .python(ad_dc_ntvfs).__main__.UserTe sts .te s t_pack_unpack_little_sd(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_03_13_member_search_linked_users(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_03_12_indexed_search_linked_users(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_02_03_link_users_3000(ad_dc_ntvfs)

samba4.ldap.ad_dc_search_performance .python(ad_dc_ntvfs).__main__.UserTests .te s t_01_10_complex_search_3k_users(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_00_11_unindexed_search_3k_users(ad_dc_ntvfs)samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_02_11_unindexed_search_partia lly_linked_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_02_01_link_users_again_1000(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_03_02_link_users_again_2000_few_groups(ad_dc_ntvfs)

samba4.ldap.ad_dc_performance .python(ad_dc_ntvfs).__main__.UserTes ts .te s t_11_02_join_full_dc(ad_dc_ntvfs)

samba4.ldap.ad_dc_multi_bind.ntlm.python(ad_dc_ntvfs).__main__.Use rTes ts .te s t_1000_concurrent_unindexed_search(ad_dc_ntvfs)

The good news

● Samba AD s getting faster, and each release is beter

● We now monitor performance (see graph next slide)

● Each issue was solved individually

● Performance fixes build on each other

Performance
graphs from
March 2016
- Search

Performance
graphs from
March 2016
- Join

Performance
graphs from
March 2016
- Add user

Performance
graphs from
March 2016
- Delete user

Performance
graphs from
March 2016
- linked atrs

Samba 4.7 so far!

● Over a 60% drop in time for

some tests

Supporting more users on each DC

● Hoping to avoid needing to run extra DCs to spread the load

● Samba 4.6 removes single-process restrictions on NETLOGON

– Really important for 802.1x backed wireless authentication

– Unbreak the WiFi and watch the DC melt instead :-(

● Samba 4.7 will support a multi-process LDAP server

– Easy to turn on in the code

– Currently fork() and cleanup for exit() costs are too high

Should we still rewrite?

● A rewrites or rebase onto (say) OpenLDAP always looks atractive

● Samba4 was such a thing for the fileserver!

● I think we learnt that lesson, and have seen what it took to do MIT Kerberos

● I would rather still carve these issues off one-at-a-time

– Bisectable changes are good!

The future for performance

● Remove other O(n) and O(n2) operations

– Multi-valued atribute handling

● Beter index handling

– Our current index code is still very much a first pass

– Proposal to move to a GUID based index

● Reaching the limits for the current DB:

– memcpy() and memmove() from ldb_tdb transactions are 20% of the time

Lightening Memory-mapped Database from Symas

● The company behind OpenLDAP

● Built by Howard Chu to make OpenLDAP fly

● LMDB backend prototyped by Jakub Hrozek of Red Hat for sssd

– Appears to be 3 times faster for some operations

● Garming Sam has been working on reimplementation

– Preparing it in a way that could be submited

– Based more tightly on the TDB LDB backend

● Still very much a WIP, but it successfully ran provision and tests!

Maintaining Performance and scale

● Large scale operation needs to be part of Samba’s autobuild

● Project to develop a new performance metric for Samba domains

– Currently under development

● Ongoing graphing of performance measurements

– Try to spot regressions before they get too old

Help wanted!

● For the performance metric tool I need to calibrate it

● I need volunteers running AD willing to run a tshark script

– Windows or Samba AD welcome

– What does your busy hour look like?

– What is the patern of requests?

● E-mail abartlet@samba.org if you can help

mailto:abartlet@samba.org

Are we at 100k users?

● No

● But we now how to get there

Recap: Improvements in Samba 4.5

● Samba 4.5 addressed major issues with the client-side of replication

– 3 of the 4 O(n2) loops removed

– Critical as these were under the transaction lock

● Turned on graph (rather than all to all) replication by default

– Previously every Samba DC would notify every other Samba DC about changes

– This could trigger a short replication storm

Recap: Some improvement in 4.6

● Samba 4.6 will avoid over-replication of links

– When replicating from server A, we also ask is what changes it got from B

– That means we don’t need to ask B for changes directly

– We did this for atributes, but didn’t do this for links previously

● Faster parsing of links also improved performance around 20% for some tasks

– Avoid sscanf() and malloc()

Recap: More improvements for 4.7

● Correct global locking will make un-indexed searches much faster

● Multi-process support will allow all CPUs to be used

● GUID-based index to be explored

Catalyst's Open Source Technologies – Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

