SAMBA

opening windows to a wider world

tientity policy audit GNOME TM

Enterprise desktop: improving client side in the age of Samba AD and FreeIPA

Principal Software Engineer, Red Hat // Samba Team

Alexander Bokovoy

Centralized identity management system

There are now several free software identity management systems with the focus on managing operating systems' environments:

- Samba AD
- FreeIPA
- [many other LDAP+Kerberos based projects]

- a client enrolled to a centralized identity management system
- a tool to solve business tasks
- ► a subject to centrally defined access controls

Typical enterprise desktop includes agents for

▶ identity services: POSIX attributes for users and groups via NSSWITCH

Typical enterprise desktop includes agents for

- ▶ identity services: POSIX attributes for users and groups via NSSWITCH
- authentication services: logon details, mostly via PAM interface

Typical enterprise desktop includes agents for

- ► identity services: POSIX attributes for users and groups via NSSWITCH
- authentication services: logon details, mostly via PAM interface
- authorization services: mostly via PAM interface or application-specific ones

FreeIPA client defaults to use SSSD as an agent

nss_sss is referenced in /etc/nsswitch.conf on Fedora by default

- nss_sss is referenced in /etc/nsswitch.conf on Fedora by default
- pam_sss use is configured at the enrollment time for system-auth PAM service which is included to all PAM configurations

- nss_sss is referenced in /etc/nsswitch.conf on Fedora by default
- pam_sss use is configured at the enrollment time for system-auth PAM service which is included to all PAM configurations
- SSSD performs host-based access control to PAM services using rules stored centrally in FreeIPA

- nss_sss is referenced in /etc/nsswitch.conf on Fedora by default
- pam_sss use is configured at the enrollment time for system-auth PAM service which is included to all PAM configurations
- SSSD performs host-based access control to PAM services using rules stored centrally in FreeIPA
- OpenSSH is configured to look up public keys for users and hosts via SSSD

- nss_sss is referenced in /etc/nsswitch.conf on Fedora by default
- pam_sss use is configured at the enrollment time for system-auth PAM service which is included to all PAM configurations
- SSSD performs host-based access control to PAM services using rules stored centrally in FreeIPA
- OpenSSH is configured to look up public keys for users and hosts via SSSD
- SUDO is configured to look up SUDO rules in FreeIPA via SSSD

- nss_sss is referenced in /etc/nsswitch.conf on Fedora by default
- pam_sss use is configured at the enrollment time for system-auth PAM service which is included to all PAM configurations
- SSSD performs host-based access control to PAM services using rules stored centrally in FreeIPA
- OpenSSH is configured to look up public keys for users and hosts via SSSD
- SUDO is configured to look up SUDO rules in FreeIPA via SSSD
- automount can be configured to use SSSD to deliver the mount maps

- nss_sss is referenced in /etc/nsswitch.conf on Fedora by default
- pam_sss use is configured at the enrollment time for system-auth PAM service which is included to all PAM configurations
- SSSD performs host-based access control to PAM services using rules stored centrally in FreeIPA
- OpenSSH is configured to look up public keys for users and hosts via SSSD
- SUDO is configured to look up SUDO rules in FreeIPA via SSSD
- automount can be configured to use SSSD to deliver the mount maps
- SSSD provides locator and localauth plugins to MIT Kerberos to discover domain controllers and map Kerberos principals to POSIX user names for trust operations

- nss_sss is referenced in /etc/nsswitch.conf on Fedora by default
- pam_sss use is configured at the enrollment time for system-auth PAM service which is included to all PAM configurations
- SSSD performs host-based access control to PAM services using rules stored centrally in FreeIPA
- OpenSSH is configured to look up public keys for users and hosts via SSSD
- SUDO is configured to look up SUDO rules in FreeIPA via SSSD
- automount can be configured to use SSSD to deliver the mount maps
- SSSD provides locator and localauth plugins to MIT Kerberos to discover domain controllers and map Kerberos principals to POSIX user names for trust operations
- ▶ SSSD supports offline logon, logon with smart cards, logon with Kerberos proxy

A pure winbindd-based setup or a hybrid SSSD+winbindd configuration

- A pure winbindd-based setup or a hybrid SSSD+winbindd configuration
- Pure winbindd: nss_winbind and pam_winbind for identity and authentication

- A pure winbindd-based setup or a hybrid SSSD+winbindd configuration
- Pure winbindd: nss_winbind and pam_winbind for identity and authentication
- Pure winbindd: Limited authorization capabilities (account lock)

- A pure winbindd-based setup or a hybrid SSSD+winbindd configuration
- Pure winbindd: nss_winbind and pam_winbind for identity and authentication
- Pure winbindd: Limited authorization capabilities (account lock)
- ► Hybrid approach:

- A pure winbindd-based setup or a hybrid SSSD+winbindd configuration
- Pure winbindd: nss_winbind and pam_winbind for identity and authentication
- Pure winbindd: Limited authorization capabilities (account lock)
- Hybrid approach:
- nss_sss and pam_sss for identity and authentication

- A pure winbindd-based setup or a hybrid SSSD+winbindd configuration
- Pure winbindd: nss_winbind and pam_winbind for identity and authentication
- Pure winbindd: Limited authorization capabilities (account lock)
- Hybrid approach:
- nss_sss and pam_sss for identity and authentication
- winbindd is used by Samba, configured to trust SSSD-provided ID range

- A pure winbindd-based setup or a hybrid SSSD+winbindd configuration
- Pure winbindd: nss_winbind and pam_winbind for identity and authentication
- Pure winbindd: Limited authorization capabilities (account lock)
- Hybrid approach:
- nss_sss and pam_sss for identity and authentication
- winbindd is used by Samba, configured to trust SSSD-provided ID range
- SSSD supports offline logon, logon with smart cards, logon with Kerberos proxy

- A pure winbindd-based setup or a hybrid SSSD+winbindd configuration
- Pure winbindd: nss_winbind and pam_winbind for identity and authentication
- Pure winbindd: Limited authorization capabilities (account lock)
- Hybrid approach:
- nss_sss and pam_sss for identity and authentication
- winbindd is used by Samba, configured to trust SSSD-provided ID range
- SSSD supports offline logon, logon with smart cards, logon with Kerberos proxy
- SSSD does authorization using GPO and/or account lock

That's all behind the scenes, what would user see?

How enterprisey are we?

A typical workflow for every laptop reboot

1. Sign into a local system account (enter a password)

A typical workflow for every laptop reboot

- 1. Sign into a local system account (enter a password)
- 2. Jump onto virtual private network (enter a password or more)

A typical workflow for every laptop reboot

- 1. Sign into a local system account (enter a password)
- 2. Jump onto virtual private network (enter a password or more)
- 3. Obtain initial Kerberos credentials (enter a password)

A typical workflow for every laptop reboot

- 1. Sign into a local system account (enter a password)
- 2. Jump onto virtual private network (enter a password or more)
- 3. Obtain initial Kerberos credentials (enter a password)
- 4. Use corporate applications (enter a password?)

Can we do better than this?

how far are we from

- Sign into a corporate environment
- Use corporate applications

?

Let's try to login!

Demo (first 40 seconds): http://talks.vda.li/2016/05/SambaXP/freeipa-logon-1FA-2FA.webm

▶ The system is configured to be a client for FreeIPA

- ▶ The system is configured to be a client for FreeIPA
- ► SSSD handles login and Kerberos keys

- The system is configured to be a client for FreeIPA
- SSSD handles login and Kerberos keys
- ► Login to the system is verified over public network using a proxy for Kerberos protocol

- The system is configured to be a client for FreeIPA
- SSSD handles login and Kerberos keys
- ► Login to the system is verified over public network using a proxy for Kerberos protocol
- Established VPN connection based on Kerberos ticket
- The system is configured to be a client for FreeIPA
- SSSD handles login and Kerberos keys
- ► Login to the system is verified over public network using a proxy for Kerberos protocol
- Established VPN connection based on Kerberos ticket
- Credentials were entered only once

Kerberos proxy

Available on the client side with Microsoft Active Directory and MIT Kerberos 1.13

- protocol is called MS-KKDCP
- transparent for Kerberos library users

Kerberos proxy is implemented by FreeIPA 4.2, OpenConnect Server 7.05, and as a standalone server

- Requires HTTPS connection, set up by default in FreeIPA 4.2, very easy to use (one line change on the client)
- Allows to obtain tickets from anywhere
- ► SSSD 1.12+
- Real-life example: GNOME project uses KDC proxy to allow GSSAPI authentication in SSH for GNOME developers

VPN and Kerberos

OpenConnect client supports GSSAPI negotiation

Fedora 22+ works out of the box

OpenVPN does not support GSSAPI negotiation

► to do since 2005, ignored by upstream

Support for GSSAPI in IPSEC is coming

Two-factor authentication

FreeIPA 4.x supports 2FA natively

- Yubikey, FreeOTP client for Android and iOS, any HOTP/TOTP compatible software and hardware
- Two-factor authentication is enforced on Kerberos level
- Performs pre-authentication before issuing a ticket
- Authentication Indicators are in Kerberos 1.14
- > Pre-authentication modules can say how tickets were issued

FreeOTP: Android and iOS

Demo

Demo (starting from 40s): http://talks.vda.li/2016/05/SambaXP/freeipa-logon-1FA-2FA.webm

1. One time password token was programmed to Yubikey and added for the user in FreeIPA

- 1. One time password token was programmed to Yubikey and added for the user in FreeIPA
- 2. SSSD handles login and notices OTP pre-authentication support in Kerberos conversation

- 1. One time password token was programmed to Yubikey and added for the user in FreeIPA
- 2. SSSD handles login and notices OTP pre-authentication support in Kerberos conversation
- 3. Login to the system is verified over public network using a proxy for Kerberos protocol

- 1. One time password token was programmed to Yubikey and added for the user in FreeIPA
- 2. SSSD handles login and notices OTP pre-authentication support in Kerberos conversation
- 3. Login to the system is verified over public network using a proxy for Kerberos protocol
- 4. Kerberos ticket is obtained, first factor is provided by SSSD to GDM for unlocking GNOME passwords and keys storage (SeaHorse)

- 1. One time password token was programmed to Yubikey and added for the user in FreeIPA
- 2. SSSD handles login and notices OTP pre-authentication support in Kerberos conversation
- 3. Login to the system is verified over public network using a proxy for Kerberos protocol
- 4. Kerberos ticket is obtained, first factor is provided by SSSD to GDM for unlocking GNOME passwords and keys storage (SeaHorse)
- 5. Credentials were entered only once

Authenticate with GSSAPI against almost anything

- Authenticate with GSSAPI against almost anything
- Obtain SAML assertion for other web services (and more)

- Authenticate with GSSAPI against almost anything
- Obtain SAML assertion for other web services (and more)
- Use to access networking file systems

- Authenticate with GSSAPI against almost anything
- Obtain SAML assertion for other web services (and more)
- Use to access networking file systems
- Display properties of the available tickets

- Authenticate with GSSAPI against almost anything
- Obtain SAML assertion for other web services (and more)
- Use to access networking file systems
- Display properties of the available tickets
- Renew the ticket granting ticket (TGT)

- Authenticate with GSSAPI against almost anything
- Obtain SAML assertion for other web services (and more)
- Use to access networking file systems
- Display properties of the available tickets
- Renew the ticket granting ticket (TGT)
- Choose which Kerberos principal is in use

Epiphany, the GNOME Web Browser, in GNOME 3.18:

► GSSAPI support is no more, depends on libsoup support

- ► GSSAPI support is no more, depends on libsoup support
- libsoup has been dragging since 2009, bug #587145

- ► GSSAPI support is no more, depends on libsoup support
- libsoup has been dragging since 2009, bug #587145
- WebkitGtk is unusable for SAML/OAuth2 interactions involving Kerberos

- ► GSSAPI support is no more, depends on libsoup support
- libsoup has been dragging since 2009, bug #587145
- WebkitGtk is unusable for SAML/OAuth2 interactions involving Kerberos
- ► One cannot use Google apps with GSSAPI in Gnome Online Accounts

- ► GSSAPI support is no more, depends on libsoup support
- libsoup has been dragging since 2009, bug #587145
- WebkitGtk is unusable for SAML/OAuth2 interactions involving Kerberos
- ▶ One cannot use Google apps with GSSAPI in Gnome Online Accounts
- ► No single sign-on with GSSAPI from GNOME applications using WebkitGtk to authenticate

Can we do better than this?

Demo of single sign-on in Epiphany

Demo(until 1m42s): http: //talks.vda.li/2016/05/SambaXP/freeipa-ipsilon-googleapps-signon.webm

Tomáš Popela (Red Hat), David Woodhouse (Intel), and Guido Guenther (Debian) worked to fix libsoup and WebkitGtk We logged into my FreeIPA server's Web UI The code is in GNOME 3.20 (March 2016) and is in Fedora 24 beta (released on May 10th) By default, all HTTPS sites advertising WWW-Authenticate: Negotiate authentication method will be probed with GSSAPI

Why all this is important?

- Multi-factor authentication moves to Web-based flows (Azure, Windows 10)
- Corporate portals are used to authenticate when accessing external resources
- Captive portals prevent Internet access before logon
- You need to be able to be on VPN before logon to your system or have Kerberos proxy working, or have multi-factor authentication working (full circle loop now)
- WebkitGTK+ is embedded in many applications

▶ Yes, effectively, a sandbox with a locked-down web engine

Down the rabbit hole ...

Enterprise desktop: improving client side in the age of Samba AD and FreeIPA

- ► Yes, effectively, a sandbox with a locked-down web engine
- But network profile (access point) needs to be selected first

Down the rabbit hole...

Enterprise desktop: improving client side in the age of Samba AD and FreeIPA

- Yes, effectively, a sandbox with a locked-down web engine
- But network profile (access point) needs to be selected first
- This means Network Manager has to run before logon

Down the rabbit hole...

- Yes, effectively, a sandbox with a locked-down web engine
- But network profile (access point) needs to be selected first
- This means Network Manager has to run before logon
- ► This means Network Manager needs to access user-specific data before logon

Down the rabbit hole...

- Yes, effectively, a sandbox with a locked-down web engine
- But network profile (access point) needs to be selected first
- This means Network Manager has to run before logon
- ► This means Network Manager needs to access user-specific data before logon
- A complete re-arrangement of logon UX

Down the rabbit hole...

Ok, anything for users, not admins?

Single sign-on to Google Apps

Demo (starting from 1m42s): http:

//talks.vda.li/2016/05/SambaXP/freeipa-ipsilon-googleapps-signon.webm

▶ Ipsilon as an Identity Provider (IdP) taking user information from FreeIPA

- ▶ Ipsilon as an Identity Provider (IdP) taking user information from FreeIPA
- Ipsilon project: http://ipsilon-project.org/

- Ipsilon as an Identity Provider (IdP) taking user information from FreeIPA
- Ipsilon project: http://ipsilon-project.org/
- ► Google Apps as a Service Provider (SP) talking to FreeIPA via Ipsilon's IdP
- Ipsilon as an Identity Provider (IdP) taking user information from FreeIPA
- Ipsilon project: http://ipsilon-project.org/
- ► Google Apps as a Service Provider (SP) talking to FreeIPA via Ipsilon's IdP
- ► Users from FreeIPA can logon to Google Apps if admin did pre-create accounts for them

- Ipsilon as an Identity Provider (IdP) taking user information from FreeIPA
- Ipsilon project: http://ipsilon-project.org/
- ► Google Apps as a Service Provider (SP) talking to FreeIPA via Ipsilon's IdP
- Users from FreeIPA can logon to Google Apps if admin did pre-create accounts for them
- ► At no point Google has access to FreeIPA users' credentials

- Ipsilon as an Identity Provider (IdP) taking user information from FreeIPA
- Ipsilon project: http://ipsilon-project.org/
- ► Google Apps as a Service Provider (SP) talking to FreeIPA via Ipsilon's IdP
- Users from FreeIPA can logon to Google Apps if admin did pre-create accounts for them
- At no point Google has access to FreeIPA users' credentials
- SSSD is the key component here, the same setup will work for a SSSD enrolled to Samba AD

- Ipsilon as an Identity Provider (IdP) taking user information from FreeIPA
- Ipsilon project: http://ipsilon-project.org/
- ► Google Apps as a Service Provider (SP) talking to FreeIPA via Ipsilon's IdP
- Users from FreeIPA can logon to Google Apps if admin did pre-create accounts for them
- At no point Google has access to FreeIPA users' credentials
- SSSD is the key component here, the same setup will work for a SSSD enrolled to Samba AD
- ► GNOME Online Accounts now configured to access Google Apps' services

- Ipsilon as an Identity Provider (IdP) taking user information from FreeIPA
- Ipsilon project: http://ipsilon-project.org/
- ► Google Apps as a Service Provider (SP) talking to FreeIPA via Ipsilon's IdP
- Users from FreeIPA can logon to Google Apps if admin did pre-create accounts for them
- At no point Google has access to FreeIPA users' credentials
- SSSD is the key component here, the same setup will work for a SSSD enrolled to Samba AD
- GNOME Online Accounts now configured to access Google Apps' services
- Setup recipe:

https://ipsilon-project.org/doc/example/google-apps.html

► Single sign-on is the primary feature

- Single sign-on is the primary feature
- Automated credentials renewal

- Single sign-on is the primary feature
- Automated credentials renewal
- Automated token/assertion renewal for SAML/OpenID

- Single sign-on is the primary feature
- Automated credentials renewal
- Automated token/assertion renewal for SAML/OpenID
- No need to store passwords locally (secure kiosks?)

Visualize

GNOME Online Accounts could show Kerberos ticket properties

- Ticket time validity, flags (forward, renewal)
- Authentication indicators
- Existing service tickets in the credentials cache and allow to remove them selectively
- Allow automatic ticket renewal if KDC permits it

Consume

Choose between different Kerberos principals

- MIT Kerberos supports kernel keyring (1.12+) and directory-based (1.11+) storage of credentials
- Multiple Kerberos principals can be stored and used at the same time
- Only a single principal can be defined as "primary" for each Kerberos realm in the collection of credentials

Kerberos ticket renewal

- SSSD supports automatic Kerberos ticket renewal for single factor cases
 - Renewing 2FA tickets requires UI interaction triggered by expiry time
 - Automatic ticket renewal requires permission from KDC, visible as a ticket flag
- GNOME Online Accounts could integrate with SSSD in prompting for credentials (multiple factors) as in 2FA case needed information could be provided via SSSD InfoPipe/AuthPipe

Better Kerberos in browsers

- Firefox Kerberos setup isn't nice
 - needs about:config manipulation
 - DNS domains associated with Kerberos realm could be discovered via DNS SRV records, prompted for confirmation once
- FreeIPA used to provide an extension to automate Firefox setup
 - Extension was generated locally for for each FreeIPA deployment to provide configuration details
 - not anymore: Firefox removed ability to provide non-publicly available extensions since version 43
- There are about dozen bugs related to GSSAPI support in Firefox, gradually being fixed by Red Hat Firefox team together with Firefox upstream

Better Kerberos in browsers

Chromium/Chrome

- Have bugs for processing of WWW-Authenticate: Negotiate when Kerberos credentials are not available
- On Linux only allows to configure Kerberos use through command line or statically system-wide, poor user experience
- A fixed libsoup/WebkitGtk allows to always use GSSAPI if server advertises
 WWW-Authenticate: Negotiate over HTTPS
 - no need to configure anything in Epiphany
 - could be further confined with a user confirmation similar to how passwords are managed at the first logon
- Konqueror browser in KDE allows to always use GSSAPI if server advertises
 WWW-Authenticate: Negotiate over HTTPS

Better Kerberos in browsers

- GSSAPI flow is synchronous, needs better UI interaction to avoid hogging down other tabs
 - still major issue for many browsers
 - Bug #890908 is on the way to be fixed in Firefox https://bugzilla.mozilla.org/show_bug.cgi?id=890908
- But asynchronous GSSAPI flow would do wonders too!

Any practical use of it?

Single sign-on at home

Demo:http: //talks.vda.li/2016/05/SambaXP/freeipa-ipsilon-owncloud-signon.webm

► I set up Ipsilon to authenticate against my FreeIPA server

- ► I set up Ipsilon to authenticate against my FreeIPA server
- I set up Owncloud instance and created a simple application to do login via Ipsilon SAML

- ► I set up Ipsilon to authenticate against my FreeIPA server
- I set up Owncloud instance and created a simple application to do login via Ipsilon SAML
- Successfully logged-in users get created in Owncloud if they belong to a certain group in FreeIPA

- I set up Ipsilon to authenticate against my FreeIPA server
- I set up Owncloud instance and created a simple application to do login via Ipsilon SAML
- Successfully logged-in users get created in Owncloud if they belong to a certain group in FreeIPA
- ► No need to enter password if Kerberos credentials are available

- I set up Ipsilon to authenticate against my FreeIPA server
- I set up Owncloud instance and created a simple application to do login via Ipsilon SAML
- Successfully logged-in users get created in Owncloud if they belong to a certain group in FreeIPA
- ► No need to enter password if Kerberos credentials are available
- Credentials were entered only once

Better support for SAML in GNOME Online Accounts

GNOME Online Accounts in GNOME 3.20 supports single sign-on with a catch

- WebDAV protocol doesn't really work well with mod_auth_mellon as SAML client
- ► Have to use separate Owncloud end-point for non-SAML logon

There is a plan to fix GNOME VFS to support SAML negotiation so that Nautilus would be able to re-negotiate when accessing WebDAV shares

How enterprisey our home could become?

Very very enterprisey

Demo:http://talks.vda.li/2016/05/SambaXP/ freeipa-ipsilon-trusted-domain-owncloud-signon.webm

FreeIPA has a cross-forest trust to an Active Directory forest

- FreeIPA has a cross-forest trust to an Active Directory forest
- Ipsilon is configured to accept all valid users provided by FreeIPA

- FreeIPA has a cross-forest trust to an Active Directory forest
- Ipsilon is configured to accept all valid users provided by FreeIPA
- Active Directory users are valid ones, with fully qualified user names to differentiate them from IPA users

- FreeIPA has a cross-forest trust to an Active Directory forest
- Ipsilon is configured to accept all valid users provided by FreeIPA
- Active Directory users are valid ones, with fully qualified user names to differentiate them from IPA users
- ► Active Directory administrator signed into Owncloud as a normal user

- FreeIPA has a cross-forest trust to an Active Directory forest
- Ipsilon is configured to accept all valid users provided by FreeIPA
- Active Directory users are valid ones, with fully qualified user names to differentiate them from IPA users
- ► Active Directory administrator signed into Owncloud as a normal user
- Credentials were entered only once

What benefits do we get by becoming enterprisey with free software?

1. Control your own infrastructure

What benefits do we get by becoming enterprisey with free software?

- 1. Control your own infrastructure
- 2. Improve user experience by reducing number of password/logon interactions

What benefits do we get by becoming enterprisey with free software?

- 1. Control your own infrastructure
- 2. Improve user experience by reducing number of password/logon interactions
- 3. Profit?

Questions?