
O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

SMB3 and Linux
Seamless POSIX file serving

Jeremy Allison
Samba Team

jra@samba.org



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Isn't cloud storage the future ?

Yes, but not usable for many existing 
apps.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Cloud Storage is a blob store

● Blob stores don't map very well onto the 
open/read/write/close random access semantics of 
most applications.

● Apps are changing to cope with no random access 
semantics of cloud stores, but this will take time.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

We still need file access protocols
● Even running in the cloud, pointing 

existing apps at file servers is useful.
● Only two viable options – NFS (v4) 

and SMB2+ (known as SMB3 from 
now on).

● Why SMB3 and not NFSv4 ?
– It's the clients..

● Both NFS and SMB are supported by 
the only clients that matter, Windows 
MacOS X and Linux.

– But Windows supports SMB3 
much better than NFS.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

SMB3 vs NFSv4
● Roughly comparable.

– SMB3 has more features.
● NFSv4 includes:

– Delegations – file and directory 
(SMB2 leases)

– Name spaces (MS-DFS)
– Sessions (long-lived handles)
– Adapted SMB ACL model 

(disaster)
– Parallel NFS (pNFS)
– Defined over RDMA



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

SMB3 vs NFSv4
● SMB3 includes:

– Transparent failover
– Clustering (Active/Active shares)
– SMB over RDMA
– Multichannel (multiple NIC)
– Encryption
– Leasing files/directories
– Snapshots
– Server-side copies

● Rapid development (whatever Microsoft adds next).
● Windows clients really want to use SMB3.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

SMB3 vs NFSv4
● NFSv4 has one current advantage in Linux → Linux 

environments:
– Close to POSIX semantics.
– Designed around POSIX clients → POSIX servers. 

● Advisory locking, rename open files, unlink open files 
etc.

● Extended attributes and other things added later.
– Modifications for Windows clients are add-ons.

● How do we fix this for SMB3 ?
– SMB3 UNIX extensions !
– SMB3 is really close to what we need for Linux → 

Linux.
● Add POSIX semantics to a Windows protocol.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Enter flexible Samba

● We have a history making this work.
– SMB1 “UNIX extensions”.

● Originally created by old (non-insane) SCO and HP.
– Method of adding POSIX 'info levels' into SMB1 

query/set file info requests.
● Later extended by Samba for both client and server:

– POSIX pathnames
– tranport level encryption
– POSIX ACLs
– Symlinks
– POSIX behaviors (rename & delete, file locking).
– Not



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

SMB1 Unix Extensions

Client Server

Negprot req:
Negprot reply:
UNIX capabilities

SetFSinfo req:
UNIX bits I want

SetFSinfo reply:
UNIX bits I will 
support

UNIX specific req:
Open with POSIX
Pathname /foo/bar UNIX specific

reply:
Open file handle



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

What SMB1 Unix 
Extensions got wrong

● Horrible hack job - abusing the protocol to add 
elements it was never designed to do:

– Tridge: “Using SetFSinfo to set global state on the 
protocol connection makes me want to vomit !”

● Apple ended up doing the same thing by adding 
Macintosh share-specific info levels for get/set.

● Biggest problem was setting the server “global state”.
– Once UNIX extensions were negotiated existing 

operations are expected to change behavior.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

(More of)
What SMB1 UNIX Extensions got wrong

● Symlinks and security - this is a disaster zone:
– Windows clients want to follow symlinks on the 

server.
– UNIX clients MUST NOT follow symlinks on the 

server.
● Transport level security (SMB1 encrypt) poorly 

designed.
● Extended Attributes (EA's) differences ignored.

– Windows EA's are not a good match.
● No other server than Samba implemented them. 



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

● SMB3 is entirely handle-based.
– The only pathname operation is to use “Create” to 

turn into a handle.
● Handles collect all the properties needed to implement

POSIX semantics into one place.
● Handles are used for delete/rename/locking/extended 

attributes.
– All the areas where POSIX requirements differ from 

Windows.

SMB3 UNIX Extensions –
A Clean Slate



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

● SMB3 has an in-built mechanism to extend the 
pathname → conversion: Create Contexts.

– Create contexts are named “blobs” of data attached 
to the “Create” request and reply.

– Unknown create contexts are ignored.
● Create contexts allowed Microsoft to extend SMB2 → 

SMB3 features by adding named elements to “Create” 
operations.

– Examples include “TWrp” (Timewarp) snapshot 
request and “SMB2_CREATE_APP_INSTANCE_ID” 
request (identified by a GUID).

● A create context named “POsx” (or more likely a GUID) 
will do nicely to add POSIX features to a create.

SMB3 Create Contexts



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

● SMB1 Unix extensions used a “POSIX CAPABILITY” 
bit in the 32-bit capabilities field in the initial server 
negotiate response.

– Required coordination with Microsoft.
– Could be re-used for SMB3 (bit already allocated).

● SMB3 has an in-built mechanism to extend the 
negotiation of client → server capabilities.

– Modeled after SMB3 Create contexts, but done at 
SMB3 initial negotiate time.

– Not a GUID (missed opportunity IMHO) – a 16-bit 
field. Still have to coordinate with Microsoft :-(

● Do we need UNIX extensions negotiation at all ?

How to negotiate SMB3 UNIX 
Extensions ?



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

● Apple used a similar method to add

Mac-specific features:
– AAPL create context (implemented in Samba by 

vfs_fruit).
● AAPL isn't a very clean design.

– Modifies contents of returned info-levels once 
negotiated.

– Negotiation step done on an initial Create call on a 
name of “” in the share.

– Reproduces the sins of SMB1 Unix extensions 
(global server state turned on by a single request).

The Apple Solution



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

● Minimal (or absent) protocol negotiation.
● No negotiation on features at Create time:

– This lead to lots of complexity in the SMB1 code.
– Add new create context for pathname → handle 

creation.
– Use existing Windows pathname parsing (UCS2, not 

UTF8). No alternate data stream names.
– Server gives “all or nothing” POSIX semantics if 

context returned.
● New handle flagged as “UNIX” internally, all operations 

become POSIX on this handle. 

The (proposed) Samba
Design



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

● What are the POSIX semantics on a handle ?
– Reads/Writes ignore POSIX locks (not Windows).
– Lock requests become advisory (not mandatory).
– Unlinks/renames are allowed on open handles (if no 

other non-UNIX handles open on the same file).
– Directory listings return POSIX namespace.

● Should QueryDirectory change info level returns ?
– Get/Set EA's use UNIX not Windows namespace.

● Do we expose the user. / system. or other EA 
namespaces ?

The (proposed) Samba
Design



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

● Symlinks are still a problem.
– How do we create them ?
– What are the EA and ACL operations permitted on 

them ?
● POSIX Info levels are 2-bytes (0x200 – 0x2FF).

– Few used (00 - 0B), but won’t fit into existing 1-byte 
SMB2+ info level space.

– As set/query info levels are attached to a file handle, 
we could define extra info levels only on POSIX 
handles.

– Use FSCTL calls instead for extra POSIX requests ?
● Windows lock ranges are unsigned, POSIX are signed.

The (proposed) Samba
Design – Unsolved Issues



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

● Have already been prototyped by both Volker 
Lendecke and Richard Sharpe of the Samba Team.

– Internal Samba issues prevented this code going into 
production.

● 'Global' state finally removed from Samba git master 
branch March 2016.

– Removed the evil 'lp_posix_pathnames()' global call 
from the Samba VFS.

– 'POSIX' flag on a handle now the only required state 
to determine server operation.

● Still some cleanup to do to expose all the Linux → 
Linux operations over SMB3, but mostly done.

Implementing the SMB3 UNIX 
Extensions in Samba



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

● SMB3 natively uses Windows ACLs
– Similar but not the same as NFSv4 ACLs.

● Linux uses POSIX ACL draft spec, coded up by 
Andreas Gruenbacher 

– We already have info levels mapped to get/set 
POSIX ACLs.

● Linux may be adding RichACLs (Andreas 
Gruenbacher's code)

– Do we map these into Windows ACLs, or create new 
info levels ?

Implementing in Samba:
The ACL Problem



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

● Prototyping will be done by adding calls to smbclient 
(the cli_XXXX() internal Samba library) to exercise new 
features in the server.

● Feature set and behavior must be agreed upon with 
the Linux CIFSFS client implementors.

– Avoid SMB1 UNIX extensions mistakes like the 
encryption support.

● Eventually expose to libsmbclient library used by 
Gnome applications like Nautilus (file browser).

– Make available to Gnome VFS users.
● What about the BSD-of-the-month club and Solaris ?

Implementing the SMB3 UNIX 
Extensions in Samba



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

The Definition of Success: 
Windows Server support ?

● Long term, to support Linux clients in a Windows cloud 
file server, Microsoft may end up needing to support 
SMB3 UNIX extensions.

– This will be dependent on market demand for Linux 
clients in a Windows cloud.

– Microsoft Azure SMB3 file server might be easiest 
target here as it's a new implementation.

● It's worth spending time getting the design right to 
make this possible.

– Don't repeat mistakes of SMB1 UNIX extensions.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Questions and Comments ?

Email: jra@samba.org

Slides available at: <tbd>

mailto:jra@samba.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

