
CTDB Performance

Amitay Isaacs
amitay@samba.org

Samba Team
IBM (Australia Development Labs, Linux Technology Center)

Amitay Isaacs CTDB Performance



CTDB Project

Motivation: Support for clustered Samba

Multiple nodes active simultaneously

Communication between nodes (heartbeat, failover)

Distributed databases between nodes

Features:

Volatile and Persistent databases

Cluster-side messaging for Samba

IP failover and load balancing

Service monitoring

Community:

http://ctdb.samba.org

git://git.samba.org/ctdb.git,
git://git.samba.org/samba.git

Amitay Isaacs CTDB Performance



Overview

Current Status

Performance Issues

Parallel database recovery
Improving database recovery
Socket handling
Database performace

Amitay Isaacs CTDB Performance



Current Status

Amitay Isaacs CTDB Performance



CTDB Releases

2.5.6 (February 2016) - 84 patches

Support volatile databases in tmpfs
Fix vlan interface monitoring
Numerous resource leak fixes

End of development in ctdb tree!

Amitay Isaacs CTDB Performance



CTDB Releases

2.5.6 (February 2016) - 84 patches

Support volatile databases in tmpfs
Fix vlan interface monitoring
Numerous resource leak fixes

End of development in ctdb tree!

Amitay Isaacs CTDB Performance



Developers

Contributions in 2015

295 Martin Schwenke
242 Amitay Isaacs

21 Volker Lendecke
16 Michael Adam

6 Christof Schmitt
6 Stefan Metzmacher
3 Mathieu Parent
3 Rajesh Joseph
2 Günther Deschner
2 Thomas Nagy
1 David Disseldorp, Jelmer Vernooij
1 Jose A. Rivera, Led
1 Paul Wayper, Ralph Boehme

Amitay Isaacs CTDB Performance



Developers

Contributions since Jan 2016

150 Martin Schwenke
102 Amitay Isaacs

6 Volker Lendecke
2 Günther Deschner
2 Michael Adam
1 Christof Schmitt
1 Jose A. Rivera
1 Karolin Seeger
1 Robin Hack
1 Steven Chamberlain

Amitay Isaacs CTDB Performance



Parallel database recovery

Amitay Isaacs CTDB Performance



Parallel database recovery

Why parallel database recovery?

Observation

Clustered samba running with SMB workload

A node goes down (overload, admin action, . . .)

CTDB starts recovery, starts freezing databases on all nodes

Fails to freeze database repeatedly, bans culprit node

Eventually CTDB bans all the nodes in the cluster

Cause

Samba is holding a lock on a record

Samba needs another record lock

Samba asks CTDB to migrate the record

The dmaster node goes down

Deadlock!

Amitay Isaacs CTDB Performance



Parallel database recovery

Why parallel database recovery?

Observation

Clustered samba running with SMB workload

A node goes down (overload, admin action, . . .)

CTDB starts recovery, starts freezing databases on all nodes

Fails to freeze database repeatedly, bans culprit node

Eventually CTDB bans all the nodes in the cluster

Cause

Samba is holding a lock on a record

Samba needs another record lock

Samba asks CTDB to migrate the record

The dmaster node goes down

Deadlock!

Amitay Isaacs CTDB Performance



Parallel database recovery

Why parallel database recovery?

Observation

Clustered samba running with SMB workload

A node goes down (overload, admin action, . . .)

CTDB starts recovery, starts freezing databases on all nodes

Fails to freeze database repeatedly, bans culprit node

Eventually CTDB bans all the nodes in the cluster

Cause

Samba is holding a lock on a record

Samba needs another record lock

Samba asks CTDB to migrate the record

The dmaster node goes down

Deadlock!

Amitay Isaacs CTDB Performance



Parallel database recovery

Why parallel database recovery?

CTDB database recovery was serial

Freeze all databases
Recover databases one by one
Unlock all databases

Problems

Causes deadlock!

Recovery daemon can stay busy for long time

Solution

Recover each database independently and in parallel

Amitay Isaacs CTDB Performance



Parallel database recovery

Why parallel database recovery?

CTDB database recovery was serial

Freeze all databases
Recover databases one by one
Unlock all databases

Problems

Causes deadlock!

Recovery daemon can stay busy for long time

Solution

Recover each database independently and in parallel

Amitay Isaacs CTDB Performance



Parallel database recovery

Why parallel database recovery?

CTDB database recovery was serial

Freeze all databases
Recover databases one by one
Unlock all databases

Problems

Causes deadlock!

Recovery daemon can stay busy for long time

Solution

Recover each database independently and in parallel

Amitay Isaacs CTDB Performance



Parallel database recovery

Why parallel database recovery?

CTDB database recovery was serial

Freeze all databases
Recover databases one by one
Unlock all databases

Problems

Causes deadlock!

Recovery daemon can stay busy for long time

Solution

Recover each database independently and in parallel

Amitay Isaacs CTDB Performance



Parallel database recovery

Why parallel database recovery?

CTDB database recovery was serial

Freeze all databases
Recover databases one by one
Unlock all databases

Problems

Causes deadlock!

Recovery daemon can stay busy for long time

Solution

Recover each database independently and in parallel

Amitay Isaacs CTDB Performance



Parallel database recovery

Why parallel database recovery?

CTDB database recovery was serial

Freeze all databases
Recover databases one by one
Unlock all databases

Problems

Causes deadlock!

Recovery daemon can stay busy for long time

Solution

Recover each database independently and in parallel

Amitay Isaacs CTDB Performance



Parallel database recovery

How to develop parallel database recovery?

It’s all client code

No libctdb

Current client code not fully async

. . . relies on nested event loops

Motivation

Need async code to exercise parallelism

. . . based on tevent_req

Need new communication framework

Improve protocol handling

Improve testability

Amitay Isaacs CTDB Performance



Parallel database recovery

How to develop parallel database recovery?

It’s all client code

No libctdb

Current client code not fully async

. . . relies on nested event loops

Motivation

Need async code to exercise parallelism

. . . based on tevent_req

Need new communication framework

Improve protocol handling

Improve testability

Amitay Isaacs CTDB Performance



Parallel database recovery

How to develop parallel database recovery?

It’s all client code

No libctdb

Current client code not fully async

. . . relies on nested event loops

Motivation

Need async code to exercise parallelism

. . . based on tevent_req

Need new communication framework

Improve protocol handling

Improve testability

Amitay Isaacs CTDB Performance



Parallel database recovery

How to develop parallel database recovery?

It’s all client code

No libctdb

Current client code not fully async

. . . relies on nested event loops

Motivation

Need async code to exercise parallelism

. . . based on tevent_req

Need new communication framework

Improve protocol handling

Improve testability

Amitay Isaacs CTDB Performance



Parallel database recovery

How to develop parallel database recovery?

It’s all client code

No libctdb

Current client code not fully async

. . . relies on nested event loops

Motivation

Need async code to exercise parallelism

. . . based on tevent_req

Need new communication framework

Improve protocol handling

Improve testability

Amitay Isaacs CTDB Performance



Parallel database recovery

How to develop parallel database recovery?

It’s all client code

No libctdb

Current client code not fully async

. . . relies on nested event loops

Motivation

Need async code to exercise parallelism

. . . based on tevent_req

Need new communication framework

Improve protocol handling

Improve testability

Amitay Isaacs CTDB Performance



Parallel database recovery

How to develop parallel database recovery?

It’s all client code

No libctdb

Current client code not fully async

. . . relies on nested event loops

Motivation

Need async code to exercise parallelism

. . . based on tevent_req

Need new communication framework

Improve protocol handling

Improve testability

Amitay Isaacs CTDB Performance



Parallel database recovery

How to develop parallel database recovery?

It’s all client code

No libctdb

Current client code not fully async

. . . relies on nested event loops

Motivation

Need async code to exercise parallelism

. . . based on tevent_req

Need new communication framework

Improve protocol handling

Improve testability

Amitay Isaacs CTDB Performance



Parallel database recovery

How to develop parallel database recovery?

It’s all client code

No libctdb

Current client code not fully async

. . . relies on nested event loops

Motivation

Need async code to exercise parallelism

. . . based on tevent_req

Need new communication framework

Improve protocol handling

Improve testability

Amitay Isaacs CTDB Performance



Parallel database recovery

How to develop parallel database recovery?

It’s all client code

No libctdb

Current client code not fully async

. . . relies on nested event loops

Motivation

Need async code to exercise parallelism

. . . based on tevent_req

Need new communication framework

Improve protocol handling

Improve testability

Amitay Isaacs CTDB Performance



Parallel database recovery

Where is protocol code?

Protocol structures distributed in various header files

Protocol marshalling embedded in the implementation

New design

All protocol structures – protocol/protocol.h

Marshaling for protocol structures

len(), push(), pull()

Marshaling for protocol elements

push(), pull()

Trying to get it right!

Amitay Isaacs CTDB Performance



Parallel database recovery

Where is protocol code?

Protocol structures distributed in various header files

Protocol marshalling embedded in the implementation

New design

All protocol structures – protocol/protocol.h

Marshaling for protocol structures

len(), push(), pull()

Marshaling for protocol elements

push(), pull()

Trying to get it right!

Amitay Isaacs CTDB Performance



Parallel database recovery

Where is protocol code?

Protocol structures distributed in various header files

Protocol marshalling embedded in the implementation

New design

All protocol structures – protocol/protocol.h

Marshaling for protocol structures

len(), push(), pull()

Marshaling for protocol elements

push(), pull()

Trying to get it right!

Amitay Isaacs CTDB Performance



Parallel database recovery

Where is protocol code?

Protocol structures distributed in various header files

Protocol marshalling embedded in the implementation

New design

All protocol structures – protocol/protocol.h

Marshaling for protocol structures

len(), push(), pull()

Marshaling for protocol elements

push(), pull()

Trying to get it right!

Amitay Isaacs CTDB Performance



Parallel database recovery

Where is protocol code?

Protocol structures distributed in various header files

Protocol marshalling embedded in the implementation

New design

All protocol structures – protocol/protocol.h

Marshaling for protocol structures

len(), push(), pull()

Marshaling for protocol elements

push(), pull()

Trying to get it right!

Amitay Isaacs CTDB Performance



Parallel database recovery

Where is protocol code?

Protocol structures distributed in various header files

Protocol marshalling embedded in the implementation

New design

All protocol structures – protocol/protocol.h

Marshaling for protocol structures

len(), push(), pull()

Marshaling for protocol elements

push(), pull()

Trying to get it right!

Amitay Isaacs CTDB Performance



Parallel database recovery

Where is protocol code?

Protocol structures distributed in various header files

Protocol marshalling embedded in the implementation

New design

All protocol structures – protocol/protocol.h

Marshaling for protocol structures

len(), push(), pull()

Marshaling for protocol elements

push(), pull()

Trying to get it right!

Amitay Isaacs CTDB Performance



Parallel database recovery

Where is protocol code?

Protocol structures distributed in various header files

Protocol marshalling embedded in the implementation

New design

All protocol structures – protocol/protocol.h

Marshaling for protocol structures

len(), push(), pull()

Marshaling for protocol elements

push(), pull()

Trying to get it right!

Amitay Isaacs CTDB Performance



Parallel database recovery

Developing new communication framework

common/db_hash.c 268 138
common/srvid.c 269 97
common/reqid.c 89 72
common/pkt_read.c 190 260
common/pkt_write.c 101 370
common/comm.c 404 843
protocol/protocol_*.c 8865 3674
client/client_*.c 7352 ?
ctdb2.c 6699 ?
fake_ctdbd.c 2284

24059 7738

Amitay Isaacs CTDB Performance



Parallel database recovery

Developing new communication framework

common/db_hash.c 268 138

common/srvid.c 269 97
common/reqid.c 89 72
common/pkt_read.c 190 260
common/pkt_write.c 101 370
common/comm.c 404 843
protocol/protocol_*.c 8865 3674
client/client_*.c 7352 ?
ctdb2.c 6699 ?
fake_ctdbd.c 2284

24059 7738

Amitay Isaacs CTDB Performance



Parallel database recovery

Developing new communication framework

common/db_hash.c 268 138
common/srvid.c 269 97

common/reqid.c 89 72
common/pkt_read.c 190 260
common/pkt_write.c 101 370
common/comm.c 404 843
protocol/protocol_*.c 8865 3674
client/client_*.c 7352 ?
ctdb2.c 6699 ?
fake_ctdbd.c 2284

24059 7738

Amitay Isaacs CTDB Performance



Parallel database recovery

Developing new communication framework

common/db_hash.c 268 138
common/srvid.c 269 97
common/reqid.c 89 72

common/pkt_read.c 190 260
common/pkt_write.c 101 370
common/comm.c 404 843
protocol/protocol_*.c 8865 3674
client/client_*.c 7352 ?
ctdb2.c 6699 ?
fake_ctdbd.c 2284

24059 7738

Amitay Isaacs CTDB Performance



Parallel database recovery

Developing new communication framework

common/db_hash.c 268 138
common/srvid.c 269 97
common/reqid.c 89 72
common/pkt_read.c 190 260
common/pkt_write.c 101 370

common/comm.c 404 843
protocol/protocol_*.c 8865 3674
client/client_*.c 7352 ?
ctdb2.c 6699 ?
fake_ctdbd.c 2284

24059 7738

Amitay Isaacs CTDB Performance



Parallel database recovery

Developing new communication framework

common/db_hash.c 268 138
common/srvid.c 269 97
common/reqid.c 89 72
common/pkt_read.c 190 260
common/pkt_write.c 101 370
common/comm.c 404 843

protocol/protocol_*.c 8865 3674
client/client_*.c 7352 ?
ctdb2.c 6699 ?
fake_ctdbd.c 2284

24059 7738

Amitay Isaacs CTDB Performance



Parallel database recovery

Developing new communication framework

common/db_hash.c 268 138
common/srvid.c 269 97
common/reqid.c 89 72
common/pkt_read.c 190 260
common/pkt_write.c 101 370
common/comm.c 404 843
protocol/protocol_*.c 8865 3674

client/client_*.c 7352 ?
ctdb2.c 6699 ?
fake_ctdbd.c 2284

24059 7738

Amitay Isaacs CTDB Performance



Parallel database recovery

Developing new communication framework

common/db_hash.c 268 138
common/srvid.c 269 97
common/reqid.c 89 72
common/pkt_read.c 190 260
common/pkt_write.c 101 370
common/comm.c 404 843
protocol/protocol_*.c 8865 3674
client/client_*.c 7352 ?

ctdb2.c 6699 ?
fake_ctdbd.c 2284

24059 7738

Amitay Isaacs CTDB Performance



Parallel database recovery

Developing new communication framework

common/db_hash.c 268 138
common/srvid.c 269 97
common/reqid.c 89 72
common/pkt_read.c 190 260
common/pkt_write.c 101 370
common/comm.c 404 843
protocol/protocol_*.c 8865 3674
client/client_*.c 7352 ?
ctdb2.c 6699 ?

fake_ctdbd.c 2284
24059 7738

Amitay Isaacs CTDB Performance



Parallel database recovery

Developing new communication framework

common/db_hash.c 268 138
common/srvid.c 269 97
common/reqid.c 89 72
common/pkt_read.c 190 260
common/pkt_write.c 101 370
common/comm.c 404 843
protocol/protocol_*.c 8865 3674
client/client_*.c 7352 ?
ctdb2.c 6699 ?
fake_ctdbd.c 2284

24059 7738

Amitay Isaacs CTDB Performance



Parallel database recovery

Developing new communication framework

common/db_hash.c 268 138
common/srvid.c 269 97
common/reqid.c 89 72
common/pkt_read.c 190 260
common/pkt_write.c 101 370
common/comm.c 404 843
protocol/protocol_*.c 8865 3674
client/client_*.c 7352 ?
ctdb2.c 6699 ?
fake_ctdbd.c 2284

24059 7738

Amitay Isaacs CTDB Performance



Parallel database recovery

Writing parallel database recovery code

ctdb_recovery_helper.c 2809

Start freeze of all databases
Once a database is frozen, recover that database
Thaw that database

Phew!

Next steps

Replace CTDB tool code (ctdb2.c)

Replace all test code (tests/src/*.c)

Amitay Isaacs CTDB Performance



Parallel database recovery

Writing parallel database recovery code

ctdb_recovery_helper.c 2809

Start freeze of all databases
Once a database is frozen, recover that database
Thaw that database

Phew!

Next steps

Replace CTDB tool code (ctdb2.c)

Replace all test code (tests/src/*.c)

Amitay Isaacs CTDB Performance



Parallel database recovery

Writing parallel database recovery code

ctdb_recovery_helper.c 2809

Start freeze of all databases
Once a database is frozen, recover that database
Thaw that database

Phew!

Next steps

Replace CTDB tool code (ctdb2.c)

Replace all test code (tests/src/*.c)

Amitay Isaacs CTDB Performance



Parallel database recovery

Writing parallel database recovery code

ctdb_recovery_helper.c 2809

Start freeze of all databases
Once a database is frozen, recover that database
Thaw that database

Phew!

Next steps

Replace CTDB tool code (ctdb2.c)

Replace all test code (tests/src/*.c)

Amitay Isaacs CTDB Performance



Parallel database recovery

Writing parallel database recovery code

ctdb_recovery_helper.c 2809

Start freeze of all databases
Once a database is frozen, recover that database
Thaw that database

Phew!

Next steps

Replace CTDB tool code (ctdb2.c)

Replace all test code (tests/src/*.c)

Amitay Isaacs CTDB Performance



Parallel database recovery

Writing parallel database recovery code

ctdb_recovery_helper.c 2809

Start freeze of all databases
Once a database is frozen, recover that database
Thaw that database

Phew!

Next steps

Replace CTDB tool code (ctdb2.c)

Replace all test code (tests/src/*.c)

Amitay Isaacs CTDB Performance



Parallel database recovery

Writing parallel database recovery code

ctdb_recovery_helper.c 2809

Start freeze of all databases
Once a database is frozen, recover that database
Thaw that database

Phew!

Next steps

Replace CTDB tool code (ctdb2.c)

Replace all test code (tests/src/*.c)

Amitay Isaacs CTDB Performance



Improving database recovery

Amitay Isaacs CTDB Performance



Improving database recovery

How is single database recovered?

PULL_DB control to collect database records from all nodes

Combine database records

PUSH_DB control to send database records to all nodes

Problems

PULL_DB and PUSH_DB use a single marshall buffer

What is the database size is large? (MAX_TALLOC_SIZE)

What’s wrong with sending 1GB of data in a single packet?

Amitay Isaacs CTDB Performance



Improving database recovery

How is single database recovered?

PULL_DB control to collect database records from all nodes

Combine database records

PUSH_DB control to send database records to all nodes

Problems

PULL_DB and PUSH_DB use a single marshall buffer

What is the database size is large? (MAX_TALLOC_SIZE)

What’s wrong with sending 1GB of data in a single packet?

Amitay Isaacs CTDB Performance



Improving database recovery

How is single database recovered?

PULL_DB control to collect database records from all nodes

Combine database records

PUSH_DB control to send database records to all nodes

Problems

PULL_DB and PUSH_DB use a single marshall buffer

What is the database size is large? (MAX_TALLOC_SIZE)

What’s wrong with sending 1GB of data in a single packet?

Amitay Isaacs CTDB Performance



Improving database recovery

How is single database recovered?

PULL_DB control to collect database records from all nodes

Combine database records

PUSH_DB control to send database records to all nodes

Problems

PULL_DB and PUSH_DB use a single marshall buffer

What is the database size is large? (MAX_TALLOC_SIZE)

What’s wrong with sending 1GB of data in a single packet?

Amitay Isaacs CTDB Performance



Improving database recovery

How is single database recovered?

PULL_DB control to collect database records from all nodes

Combine database records

PUSH_DB control to send database records to all nodes

Problems

PULL_DB and PUSH_DB use a single marshall buffer

What is the database size is large? (MAX_TALLOC_SIZE)

What’s wrong with sending 1GB of data in a single packet?

Amitay Isaacs CTDB Performance



Improving database recovery

How is single database recovered?

PULL_DB control to collect database records from all nodes

Combine database records

PUSH_DB control to send database records to all nodes

Problems

PULL_DB and PUSH_DB use a single marshall buffer

What is the database size is large? (MAX_TALLOC_SIZE)

What’s wrong with sending 1GB of data in a single packet?

Amitay Isaacs CTDB Performance



Improving database recovery

New control DB PULL

Recovery helper sends control DB_PULL with srvid

Ctdbd sends chunked database records with srvid

Recovery helper collects all records received with srvid

Ctdbd sends reply to DB_PULL with number of records

New controls DB PUSH START and DB PUSH CONFIRM

Recovery helper sends control DB_PUSH_START with srvid

Ctdbd starts listening for messages with srvid

Ctdbd replies to DB_PUSH_START

Recovery helper sends chunked database records with srvid

Recovery helper sends control DB_PUSH_CONFRIM

Ctdbd sends reply to DB_PUSH_CONFIRM with number of records

Amitay Isaacs CTDB Performance



Improving database recovery

New control DB PULL

Recovery helper sends control DB_PULL with srvid

Ctdbd sends chunked database records with srvid

Recovery helper collects all records received with srvid

Ctdbd sends reply to DB_PULL with number of records

New controls DB PUSH START and DB PUSH CONFIRM

Recovery helper sends control DB_PUSH_START with srvid

Ctdbd starts listening for messages with srvid

Ctdbd replies to DB_PUSH_START

Recovery helper sends chunked database records with srvid

Recovery helper sends control DB_PUSH_CONFRIM

Ctdbd sends reply to DB_PUSH_CONFIRM with number of records

Amitay Isaacs CTDB Performance



Improving database recovery

New control DB PULL

Recovery helper sends control DB_PULL with srvid

Ctdbd sends chunked database records with srvid

Recovery helper collects all records received with srvid

Ctdbd sends reply to DB_PULL with number of records

New controls DB PUSH START and DB PUSH CONFIRM

Recovery helper sends control DB_PUSH_START with srvid

Ctdbd starts listening for messages with srvid

Ctdbd replies to DB_PUSH_START

Recovery helper sends chunked database records with srvid

Recovery helper sends control DB_PUSH_CONFRIM

Ctdbd sends reply to DB_PUSH_CONFIRM with number of records

Amitay Isaacs CTDB Performance



Improving database recovery

New control DB PULL

Recovery helper sends control DB_PULL with srvid

Ctdbd sends chunked database records with srvid

Recovery helper collects all records received with srvid

Ctdbd sends reply to DB_PULL with number of records

New controls DB PUSH START and DB PUSH CONFIRM

Recovery helper sends control DB_PUSH_START with srvid

Ctdbd starts listening for messages with srvid

Ctdbd replies to DB_PUSH_START

Recovery helper sends chunked database records with srvid

Recovery helper sends control DB_PUSH_CONFRIM

Ctdbd sends reply to DB_PUSH_CONFIRM with number of records

Amitay Isaacs CTDB Performance



Improving database recovery

New control DB PULL

Recovery helper sends control DB_PULL with srvid

Ctdbd sends chunked database records with srvid

Recovery helper collects all records received with srvid

Ctdbd sends reply to DB_PULL with number of records

New controls DB PUSH START and DB PUSH CONFIRM

Recovery helper sends control DB_PUSH_START with srvid

Ctdbd starts listening for messages with srvid

Ctdbd replies to DB_PUSH_START

Recovery helper sends chunked database records with srvid

Recovery helper sends control DB_PUSH_CONFRIM

Ctdbd sends reply to DB_PUSH_CONFIRM with number of records

Amitay Isaacs CTDB Performance



Socket handling

Amitay Isaacs CTDB Performance



Socket handling

Amitay Isaacs CTDB Performance



Socket handling

Lots of sockets and fds

TCP connections (few)

Unix domain connections (thousands!)

Child pipe fds (tens, sometimes hundreds)

Problems

Single process single thread ctdbd

Scheduling of fds dependent on event system (epoll)

Amitay Isaacs CTDB Performance



Socket handling

Lots of sockets and fds

TCP connections (few)

Unix domain connections (thousands!)

Child pipe fds (tens, sometimes hundreds)

Problems

Single process single thread ctdbd

Scheduling of fds dependent on event system (epoll)

Amitay Isaacs CTDB Performance



Socket handling

Lots of sockets and fds

TCP connections (few)

Unix domain connections (thousands!)

Child pipe fds (tens, sometimes hundreds)

Problems

Single process single thread ctdbd

Scheduling of fds dependent on event system (epoll)

Amitay Isaacs CTDB Performance



Socket handling

Lots of sockets and fds

TCP connections (few)

Unix domain connections (thousands!)

Child pipe fds (tens, sometimes hundreds)

Problems

Single process single thread ctdbd

Scheduling of fds dependent on event system (epoll)

Amitay Isaacs CTDB Performance



Socket handling

Lots of sockets and fds

TCP connections (few)

Unix domain connections (thousands!)

Child pipe fds (tens, sometimes hundreds)

Problems

Single process single thread ctdbd

Scheduling of fds dependent on event system (epoll)

Amitay Isaacs CTDB Performance



Socket handling

Original approach

static void queue_io_read(struct ctdb_queue *queue)

{

if (ioctl(queue->fd, FIONREAD, &num_ready) != 0) { return; }

to_read = MIN(sz_bytes_req, num_ready);

nread = read(queue->fd, data + queue->partial.length, to_read);

queue->partial.length += nread;

if (nread < sz_bytes_req) { return; }

num_ready -= nread;

pkt_size = *(uint32_t *)data;

pkt_bytes_remaining = pkt_size - queue->partial.length;

to_read = MIN(pkt_bytes_remaining, num_ready);

nread = read(queue->fd, data + queue->partial.length, to_read);

queue->partial.length += nread;

if (queue->partial.length < pkt_size) { return; }

queue->callback(data, pkt_size, queue->private_data);

}

Amitay Isaacs CTDB Performance



Socket handling

Original approach

static void queue_io_read(struct ctdb_queue *queue)

{

if (ioctl(queue->fd, FIONREAD, &num_ready) != 0) { return; }

to_read = MIN(sz_bytes_req, num_ready);

nread = read(queue->fd, data + queue->partial.length, to_read);

queue->partial.length += nread;

if (nread < sz_bytes_req) { return; }

num_ready -= nread;

pkt_size = *(uint32_t *)data;

pkt_bytes_remaining = pkt_size - queue->partial.length;

to_read = MIN(pkt_bytes_remaining, num_ready);

nread = read(queue->fd, data + queue->partial.length, to_read);

queue->partial.length += nread;

if (queue->partial.length < pkt_size) { return; }

queue->callback(data, pkt_size, queue->private_data);

}

Amitay Isaacs CTDB Performance



Socket handling

Original approach

Single fd at a time (triggered by tevent)

Read one packet at a time

Fair scheduling of epoll_wait()

Affects TCP sockets

Real-time priority

Problem

Pending data on TCP sockets

Amitay Isaacs CTDB Performance



Socket handling

Original approach

Single fd at a time (triggered by tevent)

Read one packet at a time

Fair scheduling of epoll_wait()

Affects TCP sockets

Real-time priority

Problem

Pending data on TCP sockets

Amitay Isaacs CTDB Performance



Socket handling

Original approach

Single fd at a time (triggered by tevent)

Read one packet at a time

Fair scheduling of epoll_wait()

Affects TCP sockets

Real-time priority

Problem

Pending data on TCP sockets

Amitay Isaacs CTDB Performance



Socket handling

Original approach

Single fd at a time (triggered by tevent)

Read one packet at a time

Fair scheduling of epoll_wait()

Affects TCP sockets

Real-time priority

Problem

Pending data on TCP sockets

Amitay Isaacs CTDB Performance



Socket handling

Original approach

Single fd at a time (triggered by tevent)

Read one packet at a time

Fair scheduling of epoll_wait()

Affects TCP sockets

Real-time priority

Problem

Pending data on TCP sockets

Amitay Isaacs CTDB Performance



Socket handling

Original approach

Single fd at a time (triggered by tevent)

Read one packet at a time

Fair scheduling of epoll_wait()

Affects TCP sockets

Real-time priority

Problem

Pending data on TCP sockets

Amitay Isaacs CTDB Performance



Socket handling

Original approach

Single fd at a time (triggered by tevent)

Read one packet at a time

Fair scheduling of epoll_wait()

Affects TCP sockets

Real-time priority

Problem

Pending data on TCP sockets

Amitay Isaacs CTDB Performance



Socket handling

New approach

#define QUEUE_BUFFER_SIZE (16*1024)

static void queue_io_read(struct ctdb_queue *queue)

{

if (ioctl(queue->fd, FIONREAD, &num_ready) != 0) { return; }

if (queue->buffer.data == NULL) {

queue->buffer.data = talloc_size(queue, QUEUE_BUFFER_SIZE);

queue->buffer.size = QUEUE_BUFFER_SIZE;

}

navail = queue->buffer.size - queue->buffer.length;

if (num_ready > navail) { num_ready = navail; }

if (num_ready > 0) {

nread = sys_read(queue->fd, queue->buffer.data + queue->buffer.length,

num_ready);

queue->buffer.length += nread;

}

queue_process(queue);

}

Amitay Isaacs CTDB Performance



Socket handling

New approach

#define QUEUE_BUFFER_SIZE (16*1024)

static void queue_io_read(struct ctdb_queue *queue)

{

if (ioctl(queue->fd, FIONREAD, &num_ready) != 0) { return; }

if (queue->buffer.data == NULL) {

queue->buffer.data = talloc_size(queue, QUEUE_BUFFER_SIZE);

queue->buffer.size = QUEUE_BUFFER_SIZE;

}

navail = queue->buffer.size - queue->buffer.length;

if (num_ready > navail) { num_ready = navail; }

if (num_ready > 0) {

nread = sys_read(queue->fd, queue->buffer.data + queue->buffer.length,

num_ready);

queue->buffer.length += nread;

}

queue_process(queue);

}

Amitay Isaacs CTDB Performance



Socket handling

New approach

#define QUEUE_BUFFER_SIZE (16*1024)

static void queue_io_read(struct ctdb_queue *queue)

{

if (ioctl(queue->fd, FIONREAD, &num_ready) != 0) { return; }

if (queue->buffer.data == NULL) {

queue->buffer.data = talloc_size(queue, QUEUE_BUFFER_SIZE);

queue->buffer.size = QUEUE_BUFFER_SIZE;

}

navail = queue->buffer.size - queue->buffer.length;

if (num_ready > navail) { num_ready = navail; }

if (num_ready > 0) {

nread = sys_read(queue->fd, queue->buffer.data + queue->buffer.length,

num_ready);

queue->buffer.length += nread;

}

queue_process(queue);

}

Amitay Isaacs CTDB Performance



Socket handling

New approach

Single fd at a time (triggered by tevent)

Read multiple packets at a time

Fair scheduling of epoll_wait()

TCP sockets no longer affected

Real-time priority

Problem

CTDB daemon can stay busy between epoll_wait calls

. . . Handling event took 345 seconds!

Amitay Isaacs CTDB Performance



Socket handling

New approach

Single fd at a time (triggered by tevent)

Read multiple packets at a time

Fair scheduling of epoll_wait()

TCP sockets no longer affected

Real-time priority

Problem

CTDB daemon can stay busy between epoll_wait calls

. . . Handling event took 345 seconds!

Amitay Isaacs CTDB Performance



Socket handling

New approach

Single fd at a time (triggered by tevent)

Read multiple packets at a time

Fair scheduling of epoll_wait()

TCP sockets no longer affected

Real-time priority

Problem

CTDB daemon can stay busy between epoll_wait calls

. . . Handling event took 345 seconds!

Amitay Isaacs CTDB Performance



Socket handling

New approach

Single fd at a time (triggered by tevent)

Read multiple packets at a time

Fair scheduling of epoll_wait()

TCP sockets no longer affected

Real-time priority

Problem

CTDB daemon can stay busy between epoll_wait calls

. . . Handling event took 345 seconds!

Amitay Isaacs CTDB Performance



Socket handling

New approach

Single fd at a time (triggered by tevent)

Read multiple packets at a time

Fair scheduling of epoll_wait()

TCP sockets no longer affected

Real-time priority

Problem

CTDB daemon can stay busy between epoll_wait calls

. . . Handling event took 345 seconds!

Amitay Isaacs CTDB Performance



Socket handling

New approach

Single fd at a time (triggered by tevent)

Read multiple packets at a time

Fair scheduling of epoll_wait()

TCP sockets no longer affected

Real-time priority

Problem

CTDB daemon can stay busy between epoll_wait calls

. . . Handling event took 345 seconds!

Amitay Isaacs CTDB Performance



Socket handling

New approach

Single fd at a time (triggered by tevent)

Read multiple packets at a time

Fair scheduling of epoll_wait()

TCP sockets no longer affected

Real-time priority

Problem

CTDB daemon can stay busy between epoll_wait calls

. . . Handling event took 345 seconds!

Amitay Isaacs CTDB Performance



Socket handling

New approach

Single fd at a time (triggered by tevent)

Read multiple packets at a time

Fair scheduling of epoll_wait()

TCP sockets no longer affected

Real-time priority

Problem

CTDB daemon can stay busy between epoll_wait calls

. . . Handling event took 345 seconds!

Amitay Isaacs CTDB Performance



Socket handling

There’s no winning . . .

QUEUE_BUFFER_SIZE is heuristic and workload-dependent

Multiple event contexts?

Avoid processing thousands of fds in a single process

Need better communication infrastructure!

New proxy design using Volker’s unix msg, tmond?
Avoid re-inventing wheel – zeromq, . . .

Amitay Isaacs CTDB Performance



Socket handling

There’s no winning . . .

QUEUE_BUFFER_SIZE is heuristic and workload-dependent

Multiple event contexts?

Avoid processing thousands of fds in a single process

Need better communication infrastructure!

New proxy design using Volker’s unix msg, tmond?
Avoid re-inventing wheel – zeromq, . . .

Amitay Isaacs CTDB Performance



Socket handling

There’s no winning . . .

QUEUE_BUFFER_SIZE is heuristic and workload-dependent

Multiple event contexts?

Avoid processing thousands of fds in a single process

Need better communication infrastructure!

New proxy design using Volker’s unix msg, tmond?
Avoid re-inventing wheel – zeromq, . . .

Amitay Isaacs CTDB Performance



Socket handling

There’s no winning . . .

QUEUE_BUFFER_SIZE is heuristic and workload-dependent

Multiple event contexts?

Avoid processing thousands of fds in a single process

Need better communication infrastructure!

New proxy design using Volker’s unix msg, tmond?
Avoid re-inventing wheel – zeromq, . . .

Amitay Isaacs CTDB Performance



Socket handling

There’s no winning . . .

QUEUE_BUFFER_SIZE is heuristic and workload-dependent

Multiple event contexts?

Avoid processing thousands of fds in a single process

Need better communication infrastructure!

New proxy design using Volker’s unix msg, tmond?
Avoid re-inventing wheel – zeromq, . . .

Amitay Isaacs CTDB Performance



Socket handling

There’s no winning . . .

QUEUE_BUFFER_SIZE is heuristic and workload-dependent

Multiple event contexts?

Avoid processing thousands of fds in a single process

Need better communication infrastructure!

New proxy design using Volker’s unix msg, tmond?

Avoid re-inventing wheel – zeromq, . . .

Amitay Isaacs CTDB Performance



Socket handling

There’s no winning . . .

QUEUE_BUFFER_SIZE is heuristic and workload-dependent

Multiple event contexts?

Avoid processing thousands of fds in a single process

Need better communication infrastructure!

New proxy design using Volker’s unix msg, tmond?
Avoid re-inventing wheel – zeromq, . . .

Amitay Isaacs CTDB Performance



Database performance

Amitay Isaacs CTDB Performance



Database performance

Current database models

volatile persistent

distributed data replicated data
single copy multiple copies

data loss on failure loss-less
per-node per-db per-chain mutex clusterwide per-db mutex

disk backed disk backed
cluster-wide traverse local traverse

shared access client-server access

Amitay Isaacs CTDB Performance



Database performance

Current database models

volatile persistent
distributed data replicated data

single copy multiple copies
data loss on failure loss-less

per-node per-db per-chain mutex clusterwide per-db mutex
disk backed disk backed

cluster-wide traverse local traverse
shared access client-server access

Amitay Isaacs CTDB Performance



Database performance

Current database models

volatile persistent
distributed data replicated data

single copy multiple copies

data loss on failure loss-less
per-node per-db per-chain mutex clusterwide per-db mutex

disk backed disk backed
cluster-wide traverse local traverse

shared access client-server access

Amitay Isaacs CTDB Performance



Database performance

Current database models

volatile persistent
distributed data replicated data

single copy multiple copies
data loss on failure loss-less

per-node per-db per-chain mutex clusterwide per-db mutex
disk backed disk backed

cluster-wide traverse local traverse
shared access client-server access

Amitay Isaacs CTDB Performance



Database performance

Current database models

volatile persistent
distributed data replicated data

single copy multiple copies
data loss on failure loss-less

per-node per-db per-chain mutex clusterwide per-db mutex

disk backed disk backed
cluster-wide traverse local traverse

shared access client-server access

Amitay Isaacs CTDB Performance



Database performance

Current database models

volatile persistent
distributed data replicated data

single copy multiple copies
data loss on failure loss-less

per-node per-db per-chain mutex clusterwide per-db mutex
disk backed disk backed

cluster-wide traverse local traverse
shared access client-server access

Amitay Isaacs CTDB Performance



Database performance

Current database models

volatile persistent
distributed data replicated data

single copy multiple copies
data loss on failure loss-less

per-node per-db per-chain mutex clusterwide per-db mutex
disk backed disk backed

cluster-wide traverse local traverse

shared access client-server access

Amitay Isaacs CTDB Performance



Database performance

Current database models

volatile persistent
distributed data replicated data

single copy multiple copies
data loss on failure loss-less

per-node per-db per-chain mutex clusterwide per-db mutex
disk backed disk backed

cluster-wide traverse local traverse
shared access client-server access

Amitay Isaacs CTDB Performance



Database performance

Volatile databases

CTDB is involved in migrating a record

Record access is local and CTDB is not involved

Scalability dependent on performance of TDB

Use robust mutexes instead of fcntl locks
. . .

Unless there is contention!

CTDB_DBDIR=tmpfs

fcntl mutexes
single record 305k 555k
contention 165k 300k
tmpfs 176k 312k

Amitay Isaacs CTDB Performance



Database performance

Volatile databases

CTDB is involved in migrating a record

Record access is local and CTDB is not involved

Scalability dependent on performance of TDB

Use robust mutexes instead of fcntl locks
. . .

Unless there is contention!

CTDB_DBDIR=tmpfs

fcntl mutexes
single record 305k 555k
contention 165k 300k
tmpfs 176k 312k

Amitay Isaacs CTDB Performance



Database performance

Volatile databases

CTDB is involved in migrating a record

Record access is local and CTDB is not involved

Scalability dependent on performance of TDB

Use robust mutexes instead of fcntl locks
. . .

Unless there is contention!

CTDB_DBDIR=tmpfs

fcntl mutexes
single record 305k 555k
contention 165k 300k
tmpfs 176k 312k

Amitay Isaacs CTDB Performance



Database performance

Volatile databases

CTDB is involved in migrating a record

Record access is local and CTDB is not involved

Scalability dependent on performance of TDB

Use robust mutexes instead of fcntl locks
. . .

Unless there is contention!

CTDB_DBDIR=tmpfs

fcntl mutexes
single record 305k 555k
contention 165k 300k
tmpfs 176k 312k

Amitay Isaacs CTDB Performance



Database performance

Volatile databases

CTDB is involved in migrating a record

Record access is local and CTDB is not involved

Scalability dependent on performance of TDB

Use robust mutexes instead of fcntl locks

. . .

Unless there is contention!

CTDB_DBDIR=tmpfs

fcntl mutexes
single record 305k 555k
contention 165k 300k
tmpfs 176k 312k

Amitay Isaacs CTDB Performance



Database performance

Volatile databases

CTDB is involved in migrating a record

Record access is local and CTDB is not involved

Scalability dependent on performance of TDB

Use robust mutexes instead of fcntl locks

. . .

Unless there is contention!

CTDB_DBDIR=tmpfs

fcntl mutexes
single record 305k 555k

contention 165k 300k
tmpfs 176k 312k

Amitay Isaacs CTDB Performance



Database performance

Volatile databases

CTDB is involved in migrating a record

Record access is local and CTDB is not involved

Scalability dependent on performance of TDB

Use robust mutexes instead of fcntl locks
. . .

Unless there is contention!

CTDB_DBDIR=tmpfs

fcntl mutexes
single record 305k 555k

contention 165k 300k
tmpfs 176k 312k

Amitay Isaacs CTDB Performance



Database performance

Volatile databases

CTDB is involved in migrating a record

Record access is local and CTDB is not involved

Scalability dependent on performance of TDB

Use robust mutexes instead of fcntl locks
. . .

Unless there is contention!

CTDB_DBDIR=tmpfs

fcntl mutexes
single record 305k 555k

contention 165k 300k
tmpfs 176k 312k

Amitay Isaacs CTDB Performance



Database performance

Volatile databases

CTDB is involved in migrating a record

Record access is local and CTDB is not involved

Scalability dependent on performance of TDB

Use robust mutexes instead of fcntl locks
. . .

Unless there is contention!

CTDB_DBDIR=tmpfs

fcntl mutexes
single record 305k 555k
contention 165k 300k

tmpfs 176k 312k

Amitay Isaacs CTDB Performance



Database performance

Volatile databases

CTDB is involved in migrating a record

Record access is local and CTDB is not involved

Scalability dependent on performance of TDB

Use robust mutexes instead of fcntl locks
. . .

Unless there is contention!

CTDB_DBDIR=tmpfs

fcntl mutexes
single record 305k 555k
contention 165k 300k

tmpfs 176k 312k

Amitay Isaacs CTDB Performance



Database performance

Volatile databases

CTDB is involved in migrating a record

Record access is local and CTDB is not involved

Scalability dependent on performance of TDB

Use robust mutexes instead of fcntl locks
. . .

Unless there is contention!

CTDB_DBDIR=tmpfs

fcntl mutexes
single record 305k 555k
contention 165k 300k
tmpfs 176k 312k

Amitay Isaacs CTDB Performance



Database performance

Persistent databases

Every update is a cluster-wide transaction

Scalability dependent on performance of g_lock

fdatasync()!

Concurrent transactions on different databases

fcntl mutexes
g lock 1600 3000
persistent 10 10

Amitay Isaacs CTDB Performance



Database performance

Persistent databases

Every update is a cluster-wide transaction

Scalability dependent on performance of g_lock

fdatasync()!

Concurrent transactions on different databases

fcntl mutexes
g lock 1600 3000
persistent 10 10

Amitay Isaacs CTDB Performance



Database performance

Persistent databases

Every update is a cluster-wide transaction

Scalability dependent on performance of g_lock

fdatasync()!

Concurrent transactions on different databases

fcntl mutexes
g lock 1600 3000
persistent 10 10

Amitay Isaacs CTDB Performance



Database performance

Persistent databases

Every update is a cluster-wide transaction

Scalability dependent on performance of g_lock

fdatasync()!

Concurrent transactions on different databases

fcntl mutexes
g lock 1600 3000

persistent 10 10

Amitay Isaacs CTDB Performance



Database performance

Persistent databases

Every update is a cluster-wide transaction

Scalability dependent on performance of g_lock

fdatasync()!

Concurrent transactions on different databases

fcntl mutexes
g lock 1600 3000

persistent 10 10

Amitay Isaacs CTDB Performance



Database performance

Persistent databases

Every update is a cluster-wide transaction

Scalability dependent on performance of g_lock

fdatasync()!

Concurrent transactions on different databases

fcntl mutexes
g lock 1600 3000
persistent 10 10

Amitay Isaacs CTDB Performance



Database performance

Persistent databases

Every update is a cluster-wide transaction

Scalability dependent on performance of g_lock

fdatasync()!

Concurrent transactions on different databases

fcntl mutexes
g lock 1600 3000
persistent 10 10

Amitay Isaacs CTDB Performance



Database performance

Inventing new database models

Persistent, in-memory

Avoid fdatasync() overhead
Storing CTDB state information - e.g. tickles

Persistent, clusterwide per-db per-chain mutex

Avoid single transaction per database restriction
Useful for updating single keys

Persistent, lazy replication of data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Volatile, partially replicated data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Amitay Isaacs CTDB Performance



Database performance

Inventing new database models

Persistent, in-memory

Avoid fdatasync() overhead

Storing CTDB state information - e.g. tickles

Persistent, clusterwide per-db per-chain mutex

Avoid single transaction per database restriction
Useful for updating single keys

Persistent, lazy replication of data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Volatile, partially replicated data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Amitay Isaacs CTDB Performance



Database performance

Inventing new database models

Persistent, in-memory

Avoid fdatasync() overhead
Storing CTDB state information - e.g. tickles

Persistent, clusterwide per-db per-chain mutex

Avoid single transaction per database restriction
Useful for updating single keys

Persistent, lazy replication of data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Volatile, partially replicated data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Amitay Isaacs CTDB Performance



Database performance

Inventing new database models

Persistent, in-memory

Avoid fdatasync() overhead
Storing CTDB state information - e.g. tickles

Persistent, clusterwide per-db per-chain mutex

Avoid single transaction per database restriction

Useful for updating single keys

Persistent, lazy replication of data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Volatile, partially replicated data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Amitay Isaacs CTDB Performance



Database performance

Inventing new database models

Persistent, in-memory

Avoid fdatasync() overhead
Storing CTDB state information - e.g. tickles

Persistent, clusterwide per-db per-chain mutex

Avoid single transaction per database restriction
Useful for updating single keys

Persistent, lazy replication of data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Volatile, partially replicated data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Amitay Isaacs CTDB Performance



Database performance

Inventing new database models

Persistent, in-memory

Avoid fdatasync() overhead
Storing CTDB state information - e.g. tickles

Persistent, clusterwide per-db per-chain mutex

Avoid single transaction per database restriction
Useful for updating single keys

Persistent, lazy replication of data

Avoid single (or limited multiple) point(s) of failure

Storing persistent file handles

Volatile, partially replicated data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Amitay Isaacs CTDB Performance



Database performance

Inventing new database models

Persistent, in-memory

Avoid fdatasync() overhead
Storing CTDB state information - e.g. tickles

Persistent, clusterwide per-db per-chain mutex

Avoid single transaction per database restriction
Useful for updating single keys

Persistent, lazy replication of data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Volatile, partially replicated data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Amitay Isaacs CTDB Performance



Database performance

Inventing new database models

Persistent, in-memory

Avoid fdatasync() overhead
Storing CTDB state information - e.g. tickles

Persistent, clusterwide per-db per-chain mutex

Avoid single transaction per database restriction
Useful for updating single keys

Persistent, lazy replication of data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Volatile, partially replicated data

Avoid single (or limited multiple) point(s) of failure

Storing persistent file handles

Amitay Isaacs CTDB Performance



Database performance

Inventing new database models

Persistent, in-memory

Avoid fdatasync() overhead
Storing CTDB state information - e.g. tickles

Persistent, clusterwide per-db per-chain mutex

Avoid single transaction per database restriction
Useful for updating single keys

Persistent, lazy replication of data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Volatile, partially replicated data

Avoid single (or limited multiple) point(s) of failure
Storing persistent file handles

Amitay Isaacs CTDB Performance



Questions / Comments

Amitay Isaacs CTDB Performance


