
Sustaining CTDB Development

Amitay Isaacs
amitay@samba.org

Samba Team
IBM (Australia Development Labs, Linux Technology Center)

Amitay Isaacs Sustaining CTDB Development

CTDB Project

Motivation: Support for clustered Samba

Multiple nodes active simultaneously

Communication between nodes (heartbeat, failover)

Share databases between nodes

Features:

Volatile and Persistent databases

IP failover and load balancing

Service monitoring

Community:

http://ctdb.samba.org

git://git.samba.org/ctdb.git,
git://git.samba.org/samba.git

Amitay Isaacs Sustaining CTDB Development

Current Status

Amitay Isaacs Sustaining CTDB Development

Branches & Releases

Amitay Isaacs Sustaining CTDB Development

CTDB Releases

2.2 (May 2013) – 233 patches

performance improvements
recovery/vacuum database corruption fixes
fix race conditions in ctdb tool

2.3 (July 2013) – 120 patches

Add systemd support, fixes to banning code, improved traverse

2.4 (August 2013) – 90 patches

Improved ctdb startup sequence, socket handling
Fixed flags handling in recovery daemon, vacuuming bugs

2.5 (November 2013) – 146 patches

Moved ctdb socket from /tmp/ctdb.socket, change default dir
Improved documentation

CTDB tree merged with Samba

Amitay Isaacs Sustaining CTDB Development

CTDB Releases

2.2 (May 2013) – 233 patches

performance improvements
recovery/vacuum database corruption fixes
fix race conditions in ctdb tool

2.3 (July 2013) – 120 patches

Add systemd support, fixes to banning code, improved traverse

2.4 (August 2013) – 90 patches

Improved ctdb startup sequence, socket handling
Fixed flags handling in recovery daemon, vacuuming bugs

2.5 (November 2013) – 146 patches

Moved ctdb socket from /tmp/ctdb.socket, change default dir
Improved documentation

CTDB tree merged with Samba

Amitay Isaacs Sustaining CTDB Development

CTDB Releases

2.5.1 (November 2013) - 47 patches

Per database locking limits, vfork for locking children
Fixes to ctdb tool, persistent transaction code

2.5.2 (January 2014) - 36 patches

Fix ctdb reloadips
Event scripts run with vfork

2.5.3 (March 2014) - 130 patches

Improvements to vacuuming performance
Record locking compares hashes instead of keys

Amitay Isaacs Sustaining CTDB Development

Developers

Contributions in 2013 - CTDB tree

380 Martin Schwenke
233 Amitay Isaacs

46 Michael Adam
13 Mathieu Parent

6 Sumit Bose
4 Volker Lendecke
2 Srikrishan Malik
1 Christian Ambach
1 David Disseldorp

Amitay Isaacs Sustaining CTDB Development

Developers

Contributions since Jan 2014 - CTDB tree

75 Martin Schwenke
57 Amitay Isaacs
43 Michael Adam

3 Srikrishan Malik
1 David Disseldorp

Amitay Isaacs Sustaining CTDB Development

Developers

Contributions since Jan 2014 - Samba tree

62 Martin Schwenke
44 Amitay Isaacs
37 Michael Adam

3 Srikrishan Malik
2 Gregor Beck
1 Andrew Bartlett
1 Björn Baumbach
1 David Disseldorp
1 Matthias Dieter Wallnöfer
1 Volker Lendecke

Amitay Isaacs Sustaining CTDB Development

CTDB merge with Samba

Motivation

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process

Attract more developers

Not there yet!

To Do

Create waf build for CTDB, Clustered Samba
Setting up clustered samba instance for autobuild
Split monolithic code

Amitay Isaacs Sustaining CTDB Development

CTDB merge with Samba

Motivation

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process

Attract more developers

Not there yet!

To Do

Create waf build for CTDB, Clustered Samba
Setting up clustered samba instance for autobuild
Split monolithic code

Amitay Isaacs Sustaining CTDB Development

CTDB merge with Samba

Motivation

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process
Attract more developers

Not there yet!

To Do

Create waf build for CTDB, Clustered Samba
Setting up clustered samba instance for autobuild
Split monolithic code

Amitay Isaacs Sustaining CTDB Development

CTDB merge with Samba

Motivation

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process
Attract more developers

Not there yet!

To Do

Create waf build for CTDB, Clustered Samba
Setting up clustered samba instance for autobuild
Split monolithic code

Amitay Isaacs Sustaining CTDB Development

CTDB merge with Samba

Motivation

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process
Attract more developers

Not there yet!

To Do

Create waf build for CTDB, Clustered Samba
Setting up clustered samba instance for autobuild
Split monolithic code

Amitay Isaacs Sustaining CTDB Development

CTDB merge with Samba

Motivation

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process
Attract more developers

Not there yet!

To Do

Create waf build for CTDB, Clustered Samba

Setting up clustered samba instance for autobuild
Split monolithic code

Amitay Isaacs Sustaining CTDB Development

CTDB merge with Samba

Motivation

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process
Attract more developers

Not there yet!

To Do

Create waf build for CTDB, Clustered Samba
Setting up clustered samba instance for autobuild

Split monolithic code

Amitay Isaacs Sustaining CTDB Development

CTDB merge with Samba

Motivation

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process
Attract more developers

Not there yet!

To Do

Create waf build for CTDB, Clustered Samba
Setting up clustered samba instance for autobuild
Split monolithic code

Amitay Isaacs Sustaining CTDB Development

Bugs

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Problem

ctdbd: ./lib/tevent/tevent util.c:110 Handling event took 129 seconds!

Instrumented tevent epoll loop to debug timing issues

+ if (getpid() == ctdbd_pid) tevent_before_wait(epoll_ev->ev);

ret = epoll_wait(epoll_ev->epoll_fd, events, MAXEVENTS, timeout);

+ if (getpid() == ctdbd_pid) tevent_after_wait(epoll_ev->ev);

void tevent_before_wait(struct event_context *ev)

{

diff = tevent_timeval_until(&tevent_after_wait_ts, &now);

if (diff.tv_sec > 3) {

tevent_debug(ev, TEVENT_DEBUG_ERROR, __location__

" Handling event took %d seconds!", (int) diff.tv_sec);

}

}

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Problem

ctdbd: ./lib/tevent/tevent util.c:110 Handling event took 129 seconds!

Instrumented tevent epoll loop to debug timing issues

+ if (getpid() == ctdbd_pid) tevent_before_wait(epoll_ev->ev);

ret = epoll_wait(epoll_ev->epoll_fd, events, MAXEVENTS, timeout);

+ if (getpid() == ctdbd_pid) tevent_after_wait(epoll_ev->ev);

void tevent_before_wait(struct event_context *ev)

{

diff = tevent_timeval_until(&tevent_after_wait_ts, &now);

if (diff.tv_sec > 3) {

tevent_debug(ev, TEVENT_DEBUG_ERROR, __location__

" Handling event took %d seconds!", (int) diff.tv_sec);

}

}

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Problem

ctdbd: ./lib/tevent/tevent util.c:110 Handling event took 129 seconds!

Instrumented tevent epoll loop to debug timing issues

+ if (getpid() == ctdbd_pid) tevent_before_wait(epoll_ev->ev);

ret = epoll_wait(epoll_ev->epoll_fd, events, MAXEVENTS, timeout);

+ if (getpid() == ctdbd_pid) tevent_after_wait(epoll_ev->ev);

void tevent_before_wait(struct event_context *ev)

{

diff = tevent_timeval_until(&tevent_after_wait_ts, &now);

if (diff.tv_sec > 3) {

tevent_debug(ev, TEVENT_DEBUG_ERROR, __location__

" Handling event took %d seconds!", (int) diff.tv_sec);

}

}

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Problem

ctdbd: ./lib/tevent/tevent util.c:110 Handling event took 129 seconds!

Instrumented tevent epoll loop to debug timing issues

+ if (getpid() == ctdbd_pid) tevent_before_wait(epoll_ev->ev);

ret = epoll_wait(epoll_ev->epoll_fd, events, MAXEVENTS, timeout);

+ if (getpid() == ctdbd_pid) tevent_after_wait(epoll_ev->ev);

void tevent_before_wait(struct event_context *ev)

{

diff = tevent_timeval_until(&tevent_after_wait_ts, &now);

if (diff.tv_sec > 3) {

tevent_debug(ev, TEVENT_DEBUG_ERROR, __location__

" Handling event took %d seconds!", (int) diff.tv_sec);

}

}

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Generic framework to instrument tevent

+ tevent_trace_point_callback(epoll_ev->ev, TEVENT_TRACE_BEFORE_WAIT);

ret = epoll_wait(epoll_ev->epoll_fd, events, MAXEVENTS, timeout);

+ tevent_trace_point_callback(epoll_ev->ev, TEVENT_TRACE_AFTER_WAIT);

/**

* Register a callback to be called at certain trace points

*

* @param[in] ev Event context

* @param[in] cb Trace callback

* @param[in] private_data Data to be passed to callback

*

* @note The callback will be called at trace points defined by

* tevent_trace_point. Call with NULL to reset.

*/

void tevent_set_trace_callback(struct tevent_context *ev,

tevent_trace_callback_t cb,

void *private_data);

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Generic framework to instrument tevent

+ tevent_trace_point_callback(epoll_ev->ev, TEVENT_TRACE_BEFORE_WAIT);

ret = epoll_wait(epoll_ev->epoll_fd, events, MAXEVENTS, timeout);

+ tevent_trace_point_callback(epoll_ev->ev, TEVENT_TRACE_AFTER_WAIT);

/**

* Register a callback to be called at certain trace points

*

* @param[in] ev Event context

* @param[in] cb Trace callback

* @param[in] private_data Data to be passed to callback

*

* @note The callback will be called at trace points defined by

* tevent_trace_point. Call with NULL to reset.

*/

void tevent_set_trace_callback(struct tevent_context *ev,

tevent_trace_callback_t cb,

void *private_data);

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Generic framework to instrument tevent

+ tevent_trace_point_callback(epoll_ev->ev, TEVENT_TRACE_BEFORE_WAIT);

ret = epoll_wait(epoll_ev->epoll_fd, events, MAXEVENTS, timeout);

+ tevent_trace_point_callback(epoll_ev->ev, TEVENT_TRACE_AFTER_WAIT);

/**

* Register a callback to be called at certain trace points

*

* @param[in] ev Event context

* @param[in] cb Trace callback

* @param[in] private_data Data to be passed to callback

*

* @note The callback will be called at trace points defined by

* tevent_trace_point. Call with NULL to reset.

*/

void tevent_set_trace_callback(struct tevent_context *ev,

tevent_trace_callback_t cb,

void *private_data);

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Problem

ctdbd: ./lib/tevent/tevent util.c:110 Handling event took 129 seconds!

CTDB uses all types of events - fd, timer, immediate, signal

Which type of event is taking too long?

FD events – Socket handling?

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Problem

ctdbd: ./lib/tevent/tevent util.c:110 Handling event took 129 seconds!

CTDB uses all types of events - fd, timer, immediate, signal

Which type of event is taking too long?

FD events – Socket handling?

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Problem

ctdbd: ./lib/tevent/tevent util.c:110 Handling event took 129 seconds!

CTDB uses all types of events - fd, timer, immediate, signal

Which type of event is taking too long?

FD events – Socket handling?

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Socket handling

Read 1 packet per FD event

Immediate events lead to unfair scheduling across FDs

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Socket handling improvement to reduce recv-Q

Read all available data, process packets using immediate events

Immediate events lead to unfair scheduling across FDs

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Socket handling improvement to reduce recv-Q

Read all available data, process packets using immediate events

Immediate events lead to unfair scheduling across FDs

static int epoll_event_loop_once(struct tevent_context *ev)

{

if (ev->immediate_events && tevent_common_loop_immediate(ev)) {

return 0;

}

tval = tevent_common_loop_timer_delay(ev);

if (tevent_timeval_is_zero(&tval)) {

return 0;

}

return epoll_event_loop(epoll_ev, &tval);

}

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Socket handling improvement to reduce recv-Q

Read all available data, process packets using immediate events
Immediate events lead to unfair scheduling across FDs

static int epoll_event_loop_once(struct tevent_context *ev)

{

if (ev->immediate_events && tevent_common_loop_immediate(ev)) {

return 0;

}

tval = tevent_common_loop_timer_delay(ev);

if (tevent_timeval_is_zero(&tval)) {

return 0;

}

return epoll_event_loop(epoll_ev, &tval);

}

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Problem

ctdbd: ./lib/tevent/tevent util.c:110 Handling event took 129 seconds!

CTDB uses all types of events - fd, timer, immediate, signal

Which type of event is taking too long?

FD events – problem resolved using fixed size buffers

Need more information . . .

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Problem

ctdbd: ./lib/tevent/tevent util.c:110 Handling event took 129 seconds!

CTDB uses all types of events - fd, timer, immediate, signal

Which type of event is taking too long?

FD events – problem resolved using fixed size buffers

Need more information . . .

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Problem

ctdbd: ./lib/tevent/tevent util.c:110 Handling event took 129 seconds!

CTDB uses all types of events - fd, timer, immediate, signal

Which type of event is taking too long?

FD events – problem resolved using fixed size buffers

Need more information . . .

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Instrument tevent

Add more trace points
Count individual types of events

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Instrument tevent

Add more trace points

Count individual types of events

+ /* trace point just before calling fd handler function. */

+ TEVENT_TRACE_BEFORE_FD_HANDLER,

+ /* trace point just after calling fd handler function. */

+ TEVENT_TRACE_AFTER_FD_HANDLER,

+

+ /* trace point just before calling timed event handler function. */

+ TEVENT_TRACE_BEFORE_TIMED_HANDLER,

+ /* trace point just after calling timed event handler function. */

+ TEVENT_TRACE_AFTER_TIMED_HANDLER,

+

+ /* trace point just before calling immediate event handler function. */

+ TEVENT_TRACE_BEFORE_IMMEDIATE_HANDLER,

+ /* trace point just after calling immediate event handler function. */

+ TEVENT_TRACE_AFTER_IMMEDIATE_HANDLER,

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Instrument tevent

Add more trace points
Count individual types of events

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Instrument tevent

Add more trace points
Count individual types of events

2014/02/11 15:50:11 : Handling event took 4 seconds - Got 1 FD events, 12 timed events!

2014/02/11 15:52:18 : Handling timed event took 3 seconds!

2014/02/11 15:53:22 : Handling timed event took 4 seconds!

2014/02/11 15:53:23 : Handling event took 4 seconds - Got 0 FD events, 8 timed events!

2014/02/11 15:54:26 : Handling FD event took 3 seconds!

2014/02/11 15:54:27 : Handling event took 4 seconds - Got 1 FD events, 12 timed events!

2014/02/11 15:55:35 : Handling timed event took 3 seconds!

2014/02/11 15:55:35 : Handling event took 4 seconds - Got 1 FD events, 11 timed events!

2014/02/11 15:58:47 : Handling timed event took 3 seconds!

2014/02/11 15:58:47 : Handling event took 4 seconds - Got 1 FD events, 9 timed events!

2014/02/11 16:00:51 : Handling FD event took 3 seconds!

2014/02/11 16:00:53 : Handling event took 5 seconds - Got 1 FD events, 8 timed events!

2014/02/11 16:02:59 : Handling timed event took 5 seconds!

2014/02/11 16:03:00 : Handling event took 5 seconds - Got 1 FD events, 10 timed events!

2014/02/11 16:05:06 : Handling timed event took 5 seconds!

2014/02/11 16:05:07 : Handling event took 5 seconds - Got 1 FD events, 10 timed events!

2014/02/11 16:07:12 : Handling timed event took 3 seconds!

2014/02/11 16:07:12 : Handling event took 4 seconds - Got 1 FD events, 10 timed events!

2014/02/11 16:09:22 : Handling timed event took 3 seconds!

2014/02/11 16:09:22 : Handling event took 4 seconds - Got 1 FD events, 11 timed events!

Lots of timer events.

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Instrument tevent

Add more trace points
Count individual types of events

2014/02/11 15:50:11 : Handling event took 4 seconds - Got 1 FD events, 12 timed events!

2014/02/11 15:52:18 : Handling timed event took 3 seconds!

2014/02/11 15:53:22 : Handling timed event took 4 seconds!

2014/02/11 15:53:23 : Handling event took 4 seconds - Got 0 FD events, 8 timed events!

2014/02/11 15:54:26 : Handling FD event took 3 seconds!

2014/02/11 15:54:27 : Handling event took 4 seconds - Got 1 FD events, 12 timed events!

2014/02/11 15:55:35 : Handling timed event took 3 seconds!

2014/02/11 15:55:35 : Handling event took 4 seconds - Got 1 FD events, 11 timed events!

2014/02/11 15:58:47 : Handling timed event took 3 seconds!

2014/02/11 15:58:47 : Handling event took 4 seconds - Got 1 FD events, 9 timed events!

2014/02/11 16:00:51 : Handling FD event took 3 seconds!

2014/02/11 16:00:53 : Handling event took 5 seconds - Got 1 FD events, 8 timed events!

2014/02/11 16:02:59 : Handling timed event took 5 seconds!

2014/02/11 16:03:00 : Handling event took 5 seconds - Got 1 FD events, 10 timed events!

2014/02/11 16:05:06 : Handling timed event took 5 seconds!

2014/02/11 16:05:07 : Handling event took 5 seconds - Got 1 FD events, 10 timed events!

2014/02/11 16:07:12 : Handling timed event took 3 seconds!

2014/02/11 16:07:12 : Handling event took 4 seconds - Got 1 FD events, 10 timed events!

2014/02/11 16:09:22 : Handling timed event took 3 seconds!

2014/02/11 16:09:22 : Handling event took 4 seconds - Got 1 FD events, 11 timed events!

Lots of timer events.

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Instrument tevent some more

CTDB uses mostly old style tevent function names
event add fd, event add timed
Create wrappers for these functions

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Instrument tevent some more

CTDB uses mostly old style tevent function names
event add fd, event add timed

Create wrappers for these functions

#ifdef TEVENT_COMPAT_DEFINES

#define event_add_fd(ev, mem_ctx, fd, flags, handler, private_data) \

tevent_add_fd(ev, mem_ctx, fd, flags, handler, private_data)

#define event_add_timed(ev, mem_ctx, next_event, handler, private_data) \

tevent_add_timer(ev, mem_ctx, next_event, handler, private_data)

#endif /* TEVENT_COMPAT_DEFINES */

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Instrument tevent some more

CTDB uses mostly old style tevent function names
event add fd, event add timed
Create wrappers for these functions

#undef event_add_fd

#undef event_add_timed

#define event_add_fd(ev, mem_ctx, fd, flags, handler, private_data) \

_event_add_fd(ev, mem_ctx, fd, flags, handler, private_data, #handler)

#define event_add_timed(ev, mem_ctx, next, handler, private_data) \

_event_add_timed(ev, mem_ctx, next, handler, private_data, #handler)

void ctdb_event_stack_clear(void);

void ctdb_event_stack_dump(void);

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Instrument tevent some more

CTDB uses mostly old style tevent function names
event add fd, event add timed
Create wrappers for these functions

2014/02/13 15:09:04: Handling event took 9 seconds - Got 1 FD events, 9 timed events, 0 immediate events!

2014/02/13 15:09:04: event_stack: TIMER ctdb_check_for_dead_nodes (1) - 0.000069 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_vacuum_event (1) - 0.033250 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_check_health (1) - 0.006896 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_vacuum_event (1) - 0.007691 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_vacuum_event (1) - 0.250795 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_time_tick (1) - 0.000005 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_ltdb_seqnum_check (1) - 0.000005 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_statistics_update (1) - 0.000130 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_vacuum_event (1) - 7.964969 seconds

2014/02/13 15:09:04: event_stack: FD queue_io_handler (1) - 0.811996 seconds

2014/02/13 15:10:11: Handling event took 6 seconds - Got 0 FD events, 12 timed events, 0 immediate events!

2014/02/13 15:10:11: event_stack: TIMER ctdb_check_for_dead_nodes (1) - 0.000067 seconds

2014/02/13 15:10:11: event_stack: TIMER ctdb_check_health (1) - 0.003055 seconds

2014/02/13 15:10:11: event_stack: TIMER ctdb_time_tick (1) - 0.000005 seconds

2014/02/13 15:10:11: event_stack: TIMER ctdb_ltdb_seqnum_check (1) - 0.000005 seconds

2014/02/13 15:10:11: event_stack: TIMER ctdb_statistics_update (1) - 0.000182 seconds

2014/02/13 15:10:11: event_stack: TIMER ctdb_vacuum_event (7) - 6.464652 seconds

ctdb vacuum event is the culprit!

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Instrument tevent some more

CTDB uses mostly old style tevent function names
event add fd, event add timed
Create wrappers for these functions

2014/02/13 15:09:04: Handling event took 9 seconds - Got 1 FD events, 9 timed events, 0 immediate events!

2014/02/13 15:09:04: event_stack: TIMER ctdb_check_for_dead_nodes (1) - 0.000069 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_vacuum_event (1) - 0.033250 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_check_health (1) - 0.006896 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_vacuum_event (1) - 0.007691 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_vacuum_event (1) - 0.250795 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_time_tick (1) - 0.000005 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_ltdb_seqnum_check (1) - 0.000005 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_statistics_update (1) - 0.000130 seconds

2014/02/13 15:09:04: event_stack: TIMER ctdb_vacuum_event (1) - 7.964969 seconds

2014/02/13 15:09:04: event_stack: FD queue_io_handler (1) - 0.811996 seconds

2014/02/13 15:10:11: Handling event took 6 seconds - Got 0 FD events, 12 timed events, 0 immediate events!

2014/02/13 15:10:11: event_stack: TIMER ctdb_check_for_dead_nodes (1) - 0.000067 seconds

2014/02/13 15:10:11: event_stack: TIMER ctdb_check_health (1) - 0.003055 seconds

2014/02/13 15:10:11: event_stack: TIMER ctdb_time_tick (1) - 0.000005 seconds

2014/02/13 15:10:11: event_stack: TIMER ctdb_ltdb_seqnum_check (1) - 0.000005 seconds

2014/02/13 15:10:11: event_stack: TIMER ctdb_statistics_update (1) - 0.000182 seconds

2014/02/13 15:10:11: event_stack: TIMER ctdb_vacuum_event (7) - 6.464652 seconds

ctdb vacuum event is the culprit!

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Problem

ctdbd: ./lib/tevent/tevent util.c:110 Handling event took 129 seconds!

CTDB uses all types of events - fd, timer, immediate, signal

Which type of event is taking too long?

FD events – problem resolved using fixed size buffers
timer events – ctdb vacuum event

Does it explain?

Amitay Isaacs Sustaining CTDB Development

Tevent bug

Problem

ctdbd: ./lib/tevent/tevent util.c:110 Handling event took 129 seconds!

CTDB uses all types of events - fd, timer, immediate, signal

Which type of event is taking too long?

FD events – problem resolved using fixed size buffers
timer events – ctdb vacuum event

Does it explain?

Amitay Isaacs Sustaining CTDB Development

Tevent bug

ctdb vacuum event

Runs every 10 seconds
Create a vacuuming child process with fork()
On a busy system with large tdb databases (locking, brlock),
this can be quite expensive
If multiple vacuuming events trigger at the same time, . . .

Controls to CTDB daemon can time out

Amitay Isaacs Sustaining CTDB Development

Tevent bug

ctdb vacuum event

Runs every 10 seconds

Create a vacuuming child process with fork()
On a busy system with large tdb databases (locking, brlock),
this can be quite expensive
If multiple vacuuming events trigger at the same time, . . .

Controls to CTDB daemon can time out

Amitay Isaacs Sustaining CTDB Development

Tevent bug

ctdb vacuum event

Runs every 10 seconds for each volatile database

Create a vacuuming child process with fork()
On a busy system with large tdb databases (locking, brlock),
this can be quite expensive
If multiple vacuuming events trigger at the same time, . . .

Controls to CTDB daemon can time out

Amitay Isaacs Sustaining CTDB Development

Tevent bug

ctdb vacuum event

Runs every 10 seconds for each volatile database
Create a vacuuming child process with fork()

On a busy system with large tdb databases (locking, brlock),
this can be quite expensive
If multiple vacuuming events trigger at the same time, . . .

Controls to CTDB daemon can time out

Amitay Isaacs Sustaining CTDB Development

Tevent bug

ctdb vacuum event

Runs every 10 seconds for each volatile database
Create a vacuuming child process with fork()

On a busy system with large tdb databases (locking, brlock),
this can be quite expensive
If multiple vacuuming events trigger at the same time, . . .

Controls to CTDB daemon can time out

Time (in µs) required to create a child process

Memory 0M 10M 100M

fork 41 ± 3 151 ± 10 1075 ± 61

Amitay Isaacs Sustaining CTDB Development

Tevent bug

ctdb vacuum event

Runs every 10 seconds for each volatile database
Create a vacuuming child process with fork()
On a busy system with large tdb databases (locking, brlock),
this can be quite expensive

If multiple vacuuming events trigger at the same time, . . .

Controls to CTDB daemon can time out

Amitay Isaacs Sustaining CTDB Development

Tevent bug

ctdb vacuum event

Runs every 10 seconds for each volatile database
Create a vacuuming child process with fork()
On a busy system with large tdb databases (locking, brlock),
this can be quite expensive
If multiple vacuuming events trigger at the same time, . . .

Controls to CTDB daemon can time out

Amitay Isaacs Sustaining CTDB Development

Tevent bug

ctdb vacuum event

Runs every 10 seconds for each volatile database
Create a vacuuming child process with fork()
On a busy system with large tdb databases (locking, brlock),
this can be quite expensive
If multiple vacuuming events trigger at the same time, . . .

Controls to CTDB daemon can time out

Amitay Isaacs Sustaining CTDB Development

Tevent bug

ctdb vacuum event

Runs every 10 seconds for each volatile database
Create a vacuuming child process with fork()
On a busy system with large tdb databases (locking, brlock),
this can be quite expensive
If multiple vacuuming events trigger at the same time, . . .

Controls to CTDB daemon can time out

Solutions

Stagger vacuuming child processes?
Create a long running vacuuming daemon?

Vacuuming has other problems too . . .

Amitay Isaacs Sustaining CTDB Development

Tevent bug

ctdb vacuum event

Runs every 10 seconds for each volatile database
Create a vacuuming child process with fork()
On a busy system with large tdb databases (locking, brlock),
this can be quite expensive
If multiple vacuuming events trigger at the same time, . . .

Controls to CTDB daemon can time out

Solutions

Stagger vacuuming child processes?

Create a long running vacuuming daemon?

Vacuuming has other problems too . . .

Amitay Isaacs Sustaining CTDB Development

Tevent bug

ctdb vacuum event

Runs every 10 seconds for each volatile database
Create a vacuuming child process with fork()
On a busy system with large tdb databases (locking, brlock),
this can be quite expensive
If multiple vacuuming events trigger at the same time, . . .

Controls to CTDB daemon can time out

Solutions

Stagger vacuuming child processes?
Create a long running vacuuming daemon?

Vacuuming has other problems too . . .

Amitay Isaacs Sustaining CTDB Development

Tevent bug

ctdb vacuum event

Runs every 10 seconds for each volatile database
Create a vacuuming child process with fork()
On a busy system with large tdb databases (locking, brlock),
this can be quite expensive
If multiple vacuuming events trigger at the same time, . . .

Controls to CTDB daemon can time out

Solutions

Stagger vacuuming child processes?
Create a long running vacuuming daemon?

Vacuuming has other problems too . . .

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Problem

ctdbd: Vacuuming child process timed out for db locking.tdb

Timer to track run-away vacuuming (120 seconds)

What is Vacuuming? Why is it important?

When Samba is done with a record, it deletes it from TDB.

With CTDB, the record cannot be deleted immediately.

Instead, mark the record as deleted (empty data),
and delete from all the nodes (vacuuming).

Why not delete the record from all nodes immediately?

Performance
What happens if deleting fails on a remote node?

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Problem

ctdbd: Vacuuming child process timed out for db locking.tdb

Timer to track run-away vacuuming (120 seconds)

What is Vacuuming? Why is it important?

When Samba is done with a record, it deletes it from TDB.

With CTDB, the record cannot be deleted immediately.

Instead, mark the record as deleted (empty data),
and delete from all the nodes (vacuuming).

Why not delete the record from all nodes immediately?

Performance
What happens if deleting fails on a remote node?

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Problem

ctdbd: Vacuuming child process timed out for db locking.tdb

Timer to track run-away vacuuming (120 seconds)

What is Vacuuming? Why is it important?

When Samba is done with a record, it deletes it from TDB.

With CTDB, the record cannot be deleted immediately.

Instead, mark the record as deleted (empty data),
and delete from all the nodes (vacuuming).

Why not delete the record from all nodes immediately?

Performance
What happens if deleting fails on a remote node?

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Problem

ctdbd: Vacuuming child process timed out for db locking.tdb

Timer to track run-away vacuuming (120 seconds)

What is Vacuuming? Why is it important?

When Samba is done with a record, it deletes it from TDB.
(e.g. When a file is closed, locking.tdb record is deleted)

With CTDB, the record cannot be deleted immediately.

Instead, mark the record as deleted (empty data),
and delete from all the nodes (vacuuming).

Why not delete the record from all nodes immediately?

Performance
What happens if deleting fails on a remote node?

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Problem

ctdbd: Vacuuming child process timed out for db locking.tdb

Timer to track run-away vacuuming (120 seconds)

What is Vacuuming? Why is it important?

When Samba is done with a record, it deletes it from TDB.
(e.g. When a file is closed, locking.tdb record is deleted)

With CTDB, the record cannot be deleted immediately.

Instead, mark the record as deleted (empty data),
and delete from all the nodes (vacuuming).

Why not delete the record from all nodes immediately?

Performance
What happens if deleting fails on a remote node?

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Problem

ctdbd: Vacuuming child process timed out for db locking.tdb

Timer to track run-away vacuuming (120 seconds)

What is Vacuuming? Why is it important?

When Samba is done with a record, it deletes it from TDB.
(e.g. When a file is closed, locking.tdb record is deleted)

With CTDB, the record cannot be deleted immediately.

Instead, mark the record as deleted (empty data),

and delete from all the nodes (vacuuming).

Why not delete the record from all nodes immediately?

Performance
What happens if deleting fails on a remote node?

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Problem

ctdbd: Vacuuming child process timed out for db locking.tdb

Timer to track run-away vacuuming (120 seconds)

What is Vacuuming? Why is it important?

When Samba is done with a record, it deletes it from TDB.
(e.g. When a file is closed, locking.tdb record is deleted)

With CTDB, the record cannot be deleted immediately.

Instead, mark the record as deleted (empty data),
and delete from all the nodes (vacuuming).

Why not delete the record from all nodes immediately?

Performance
What happens if deleting fails on a remote node?

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Problem

ctdbd: Vacuuming child process timed out for db locking.tdb

Timer to track run-away vacuuming (120 seconds)

What is Vacuuming? Why is it important?

When Samba is done with a record, it deletes it from TDB.
(e.g. When a file is closed, locking.tdb record is deleted)

With CTDB, the record cannot be deleted immediately.

Instead, mark the record as deleted (empty data),
and delete from all the nodes (vacuuming).

Why not delete the record from all nodes immediately?

Performance
What happens if deleting fails on a remote node?

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Problem

ctdbd: Vacuuming child process timed out for db locking.tdb

Timer to track run-away vacuuming (120 seconds)

What is Vacuuming? Why is it important?

When Samba is done with a record, it deletes it from TDB.
(e.g. When a file is closed, locking.tdb record is deleted)

With CTDB, the record cannot be deleted immediately.

Instead, mark the record as deleted (empty data),
and delete from all the nodes (vacuuming).

Why not delete the record from all nodes immediately?

Performance

What happens if deleting fails on a remote node?

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Problem

ctdbd: Vacuuming child process timed out for db locking.tdb

Timer to track run-away vacuuming (120 seconds)

What is Vacuuming? Why is it important?

When Samba is done with a record, it deletes it from TDB.
(e.g. When a file is closed, locking.tdb record is deleted)

With CTDB, the record cannot be deleted immediately.

Instead, mark the record as deleted (empty data),
and delete from all the nodes (vacuuming).

Why not delete the record from all nodes immediately?

Performance
What happens if deleting fails on a remote node?

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Vacuuming Process
1 On dmaster migrate empty record to lmaster
2 On lmaster, write empty record to the other nodes
3 On lmaster, delete empty record from the other nodes
4 On lmaster, delete record locally

This process is repeated for each and every deleted record

Need to handle data corruption if database recovery happens!

At every stage, check if the record is still empty

If an operation fails, skip the record

Periodic database traverse to check any skipped records

Vacuuming can get in the way of regular record processing

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Vacuuming Process
1 On dmaster migrate empty record to lmaster
2 On lmaster, write empty record to the other nodes
3 On lmaster, delete empty record from the other nodes
4 On lmaster, delete record locally

This process is repeated for each and every deleted record

Need to handle data corruption if database recovery happens!

At every stage, check if the record is still empty

If an operation fails, skip the record

Periodic database traverse to check any skipped records

Vacuuming can get in the way of regular record processing

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Vacuuming Process
1 On dmaster migrate empty record to lmaster
2 On lmaster, write empty record to the other nodes
3 On lmaster, delete empty record from the other nodes
4 On lmaster, delete record locally

This process is repeated for each and every deleted record

Need to handle data corruption if database recovery happens!

At every stage, check if the record is still empty

If an operation fails, skip the record

Periodic database traverse to check any skipped records

Vacuuming can get in the way of regular record processing

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Vacuuming Process
1 On dmaster migrate empty record to lmaster
2 On lmaster, write empty record to the other nodes
3 On lmaster, delete empty record from the other nodes
4 On lmaster, delete record locally

This process is repeated for each and every deleted record

Need to handle data corruption if database recovery happens!

At every stage, check if the record is still empty

If an operation fails, skip the record

Periodic database traverse to check any skipped records

Vacuuming can get in the way of regular record processing

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Vacuuming Process
1 On dmaster migrate empty record to lmaster
2 On lmaster, write empty record to the other nodes
3 On lmaster, delete empty record from the other nodes
4 On lmaster, delete record locally

This process is repeated for each and every deleted record

Need to handle data corruption if database recovery happens!

At every stage, check if the record is still empty

If an operation fails, skip the record

Periodic database traverse to check any skipped records

Vacuuming can get in the way of regular record processing

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Vacuuming Process
1 On dmaster migrate empty record to lmaster
2 On lmaster, write empty record to the other nodes
3 On lmaster, delete empty record from the other nodes
4 On lmaster, delete record locally

This process is repeated for each and every deleted record

Need to handle data corruption if database recovery happens!

At every stage, check if the record is still empty

If an operation fails, skip the record

Periodic database traverse to check any skipped records

Vacuuming can get in the way of regular record processing

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Vacuuming Process
1 On dmaster migrate empty record to lmaster
2 On lmaster, write empty record to the other nodes
3 On lmaster, delete empty record from the other nodes
4 On lmaster, delete record locally

This process is repeated for each and every deleted record

Need to handle data corruption if database recovery happens!

At every stage, check if the record is still empty

If an operation fails, skip the record

Periodic database traverse to check any skipped records

Vacuuming can get in the way of regular record processing

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Improvements

Use tdb parse record() instead of tdb fetch()
Use non-blocking lock when traversing delete queue
Improve VACUUM FETCH processing in recovery daemon

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Improvements

Use tdb parse record() instead of tdb fetch()

Use non-blocking lock when traversing delete queue
Improve VACUUM FETCH processing in recovery daemon

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Improvements

Use tdb parse record() instead of tdb fetch()
Use non-blocking lock when traversing delete queue

Improve VACUUM FETCH processing in recovery daemon

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Improvements

Use tdb parse record() instead of tdb fetch()
Use non-blocking lock when traversing delete queue
Improve VACUUM FETCH processing in recovery daemon

Amitay Isaacs Sustaining CTDB Development

Vacuuming performance

Improvements

Use tdb parse record() instead of tdb fetch()
Use non-blocking lock when traversing delete queue
Improve VACUUM FETCH processing in recovery daemon

Amitay Isaacs Sustaining CTDB Development

Going forward

Amitay Isaacs Sustaining CTDB Development

The future?

Split monolithic code into separate daemons

Logging, IP handling, Services monitoring

Missing CTDB library – libctdb

Require async API
Thread-safe

CTDB Protocol

Auto-generated marshalling/unmarshalling code
Version tracking

Scalability – large number of nodes

Database recovery
Handling record contention
Vacuuming

Pluggable Monitoring and Failover

Integration with 3rd party HA

Amitay Isaacs Sustaining CTDB Development

Questions/Comments?

Amitay Isaacs Sustaining CTDB Development

