
O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

The Evolution of I/O in Samba

Jeremy Allison
Samba Team

jra@samba.org

mailto:jra@samba.org


O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

In the beginning..

read()
write()
lseek()



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

The initial I/O path
Client Server

lseek()
write()
read()

SMBread
SMBwrite
reply

SMBread
SMBwrite
request

Memory
Copies
to/from
buffer
cache

Network

Memory
Copies
to/from
user
space

Userspace Kernel
space



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

“A simpler server for a 
more

simple age of clients” 
● Old (DOS/Windows 3.x/Windows 9.x) clients 

did not issue multiple simultaneous 
read/write requests on the wire.

● Maximum read/write requests were 64k, 
most clients used much smaller sizes (max. 
of 60k from Windows clients).

● Preceeded the pread/pwrite system calls, so 
lseek()/ESPIPE errors were ignored to allow 
communication with UNIX fifos.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

First read optimization
ServerNetwork

Memory
Copies
to/from
user
space

SMBread
reply

Mmap file

SMBread
request

Buffer
Cache



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

A read optimization
● Early work – Samba 1.x days.
● On opening a read-only file we attempted to 

mmap() the entire file.
● Direct copy from the buffer cache to the 

outgoing packet.
– Still did two copies, but no lseek()/read() 

system call pair needed.

– File truncation causes segfaults. Oops.

● “read prediction” was added to read one 
SMBread segments into memory on read-
only file open.

– Removed once oplocks were added into 
the server. 



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

“write cache” 
optimization

ServerNetwork

Memory
Copies
to/from
user
space

SMB[2]read or
SMB[2]write
reply

Memory
Buffer

SMB[2]read or
SMB[2]write
request

Buffer
Cache



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

“write cache” optimization
● Only valid on oplocked files, allowes server 

to buffer up small writes until a RAID stripe 
size is reached.

– Improved performance on SGI XFS 
filesystem.

● Reads served out of userspace cache if 
within range.

– Complex logic needed to cope with read or 
write positions partially overlapping with the 
cache.

– More complex logic to keep cache coheret.

● Dynamic movement of the cache to cover 
“hotspots” in client activity.

– See the ascii art in source3/smbd/fileio.c

● Still in use today, despite drawbacks.
– If it goes wrong, it corrupts files.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

First tool use – Samba VFS !

Core smbd server
logic

Shared Library
Shared Library
Shared Library
Shared Library
Shared Library
Shared Library

open()

close()

file_lock()

close()

pwrite()
pread()

stat()



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

The Samba VFS
● A completely configurable, easily 

programmed read/write path allowed an 
explosion of creativity inside Samba.

– Modules created to allow read-ahead on 
files, preallocate space, provide a recycle 
bin for deleted files, interface with anti-virus 
and many other options.

● Every code path that touches the disk can be 
trivially intercepted.

– Stackable design means only implement 
the calls you need.

– Freed up vendors and OEMs and users 
depending on Samba from having to patch 
the source code.

– Interface is currently kept stable within a 
major release (3.5.x, 3.6.x etc.).



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

“zero copy” - sendfile()
ServerNetwork

SMB[2]readX
reply

SMB[2]readX 
request

Buffer
Cache

ReadX
request
check:
create
reply header

sendfile()
system
call

Zero copy
reply from
buffer cache



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

“zero copy” - sendfile()
● Only done on oplocked files with a 

SMBreadX or SMB2 READ call.
– Does not work for signed requests.

● Header is created in smbd layer, then sent 
back to client.

– Data payload zero-copied from the buffer 
cache via a sendfile() call.

– Fun with different sendfile() 
implementations.

● Can really improve performance.
– Usually around 10%, depending on 

workload, disks, network, the way the wind 
is blowing etc.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

“zero copy” - recvfile()
ServerNetwork

SMBwriteX
reply

SMBwriteX 
request

Buffer
Cache

Valid WriteX
request
check

Zero copy
write into
buffer cache

Header

WriteX
data



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

“zero copy” - recvfile()
● NOT a standard POSIX/Unix/Linux system 

call.
– Isilon (now EMC) implemented the initial 

code paths in Samba.

– Custom *BSD code implemented this in 
their kernel.

– Doesn't work with signed requests.

● Problems on other systems is sendfile() is 
not symmetric.

– Can't do zero copy from network to buffer 
cache.

● Linux tried to solve this by using splice() call.
– Idea is to use a pipe handle as a way to 

bounce the data into the buffer cache.

– Problem is it's slower than read/write paths.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

Asynchronous at last – POSIX 
AIO

ServerNetwork

aio_read() or 
aio_write()

SMBread or
SMBwrite
reply

SMBread or
SMBwrite
request

Buffer
Cache

Notification 
signalaio_return()

collects reply

Other SMB
Requests/replies

Other SMB 
call processing



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

Asynchronous at last – POSIX 
AIO

● Horribly complex interface. Dependent on 
POSIX-RT signals for notification.

– Linux kernel refused to implement, glibc 
implemented in userspace using pthreads.

– Linux kernel implements a Linux-specific 
API.

● Semantics of operations like “cancel” are 
unclear for a file server.

– Both SMB1 and SMB2 can cancel 
operations. SMB1 never does (at least for 
I/O). Unclear about SMB2.

● Older clients (pre-Windows 7) only issue one 
outstanding I/O per thread. Few programs 
actually do this.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

The dark ages - glibc AIO

● glibc implementation has two problems.
– As smbd changes effective uid, it can get 

into a situation where it has no permissions 
to deliver the notification signal.

● Smbd solved this via a horrible internal 
hack.

– glibc forces multiple outstanding I/O 
requests on the same file descriptor to be 
synchronous.

● This is NEVER what you want.
● Path fixing this was not accepted.

● Other systems (e.g. Solaris) don't have these 
issues.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

Driving AIO with libsmb

Server

Network

aio_read() or 
aio_write()

SMBread or
SMBwrite
reply

SMBread or
SMBwrite
request

Buffer
Cache

Notification 
signal

Followup
SMBread or
SMBwrite
request

aio_return()
collects reply



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

Driving AIO with libsmb
● First implemented by Volker Lendecke – who 

proved you could saturate gigabit wire with 
SMB1 traffic.

– Idea is to pipeline multiple outstanding I/O 
requests up to the server declared max 
mux value.

– As one completes at the server, and is 
received by the client, the client dispatches 
the next one in the queue, keeping the 
pipeline full.

● Outstanding performance improvements.
– One of the initial touted benefits of SMB2.

– Windows Vista onwards implements a 
version of this in the SMB1 and SMB2 
redirectors.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

SMB2 and the new Windows 
redirectors

● Windows Vista onwards now includes an 
SMB1 redirector that will do pipelining of I/O 
requests (or maybe it's an improved explorer 
shell).

● SMB2 is designed to do multiple outstanding 
I/O, and can cope with quite large read/write 
sizes.

– Although SMB2.0 is still restricted to 64k.

● Supporting AIO is a requirement for any 
servers servicing these systems to get good 
performance.

– Depending on disk spindles available, CPU 
etc. etc.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

Enter Charles Darwin – 
Volker and vfs_aio_fork()

ServerNetwork

Dispatch function
to process pool

SMBread or
SMBwrite
reply

SMBread or
SMBwrite
request

sub-process

sub-process

sub-processsub-process

Shared
memory
Buffer

Other SMB
Requests/replies



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

vfs_aio_fork()
● vfs_aio_fork is a very clever piece of code 

that hides a process worker pool behind the 
POSIX AIO interface.

– Uses pipes not signals for I/O completion 
notification.

– Passes file descriptor to operate on to child 
process via sendmsg() to create a new fd 
in the child.

● Module is resource intensive.
– Only really efficient on systems like Linux 

where creating processes is a relatively 
lightweight activity.

– Does introduce another memcpy, from the 
intermediate memory buffer into the 
outgoing packet buffer.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

The Renaissance – 
vfs_aio_pthread/vfs_aio_l

inux ServerNetwork

Dispatch function
to thread pool

SMB[2]read or
SMB[2]write
reply

SMB[2]read or
SMB[2]write
request

pthread

pthread

pthreadEvent notification
of completed I/O

Other SMB[2]
Requests/replies



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

vfs_aio_pthread
● Module structure is shamelessly stolen from 

Volker's vfs_aio_fork code.
● Instead of processes, vfs_aio_pthread uses 

a pthread pool library (also written by Volker) 
to provide the back end asynchronous 
operation.

– Maximum pthreads in the process pool is 
set quite large (128), as performance 
depends on keeping as many disk spindles 
busy as possible.

– Idle threads are destroyed after 1 second, 
making this module capable of coping with 
large bursts of I/O requests, but keeping 
resource use low.

– Pthreads copy directly to/from 
outgoing/incoming packet buffers, avoiding 
the extra memcpy.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

vfs_aio_linux
● Module structure is shamelessly stolen 

vfs_aio_pthread, which inherits from Volker's 
vfs_aio_fork code.

● Instead of threads, vfs_aio_linux uses the 
native Linux AIO system calls to provide 
back end asynchronous operation.

– Theoretically (module still under test) this 
should be the most resource efficient way 
of providing asynchronous operation. 
Everything done asynchronously at the 
system call level.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

Let a thousand flowers 
bloom – tevent and 
asynchronous VFS

ServerNetwork

Request
parse 
logic

SMB2 reply

Any SMB2 request

VFS API

Async 
VFS 
request

Async VFS 
notificationReply

parse 
logic

Other
SMB2
traffic



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

tevent and the asynchronous 
VFS

● Now we have a boilerplate asynchronous 
programming API/state machine – tevent, we 
can start splitting up the VFS into 
XXX_send() / XXX_recv() call pairs that 
complete asynchronously.

– This will make a “simple” VFS module more 
complex, but providing multiple examples 
should help.

– Core logic for much of the file server will 
have to be refactored – not a complete 
rewrite, more a code reorganization (but we 
have to do this anyway to add more 
SMB2+ features).

– Eventually the VFS won't resemble POSIX 
much.

● But will still be easier to use than making the 
entire smbd and all VFS modules thread-
safe :-).

● Copychunk might be the first new code to 
use this.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

Where are the numbers ?
● This is the slide with graphs showing how 

turning on AIO modules doubles Samba 
performance, uses less resources and 
generally makes life better.

– Unfortunately this is not that slide.

● Completely depends on available system 
resources.

– An example. Testing at an OEM who uses 
a low-powered CPU, adding AIO for write 
added 10% to performance, adding AIO for 
read lost 10% performance.

● Turns out zero-copy sendfile() is much more 
important on that box.

● Performance is very dependent on disk 
access pattern, client tests, number of 
spindles, network performance and a host of 
other things. Do your own tests.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

Questions and Comments ?

Email: jra@samba.org

mailto:jra@samba.org

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

