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The Evolution of I/O in Samba

Jeremy Allison
Samba Team

jra@samba.org

mailto:jra@samba.org


O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

In the beginning..

read()
write()
lseek()
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The initial I/O path
Client Server

lseek()
write()
read()

SMBread
SMBwrite
reply

SMBread
SMBwrite
request

Memory
Copies
to/from
buffer
cache

Network

Memory
Copies
to/from
user
space

Userspace Kernel
space
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“A simpler server for a 
more

simple age of clients” 
● Old (DOS/Windows 3.x/Windows 9.x) clients 

did not issue multiple simultaneous 
read/write requests on the wire.

● Maximum read/write requests were 64k, 
most clients used much smaller sizes (max. 
of 60k from Windows clients).

● Preceeded the pread/pwrite system calls, so 
lseek()/ESPIPE errors were ignored to allow 
communication with UNIX fifos.
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First read optimization
ServerNetwork

Memory
Copies
to/from
user
space

SMBread
reply

Mmap file

SMBread
request

Buffer
Cache
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A read optimization
● Early work – Samba 1.x days.
● On opening a read-only file we attempted to 

mmap() the entire file.
● Direct copy from the buffer cache to the 

outgoing packet.
– Still did two copies, but no lseek()/read() 

system call pair needed.

– File truncation causes segfaults. Oops.

● “read prediction” was added to read one 
SMBread segments into memory on read-
only file open.

– Removed once oplocks were added into 
the server. 
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“write cache” 
optimization

ServerNetwork

Memory
Copies
to/from
user
space

SMB[2]read or
SMB[2]write
reply

Memory
Buffer

SMB[2]read or
SMB[2]write
request

Buffer
Cache



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

“write cache” optimization
● Only valid on oplocked files, allowes server 

to buffer up small writes until a RAID stripe 
size is reached.

– Improved performance on SGI XFS 
filesystem.

● Reads served out of userspace cache if 
within range.

– Complex logic needed to cope with read or 
write positions partially overlapping with the 
cache.

– More complex logic to keep cache coheret.

● Dynamic movement of the cache to cover 
“hotspots” in client activity.

– See the ascii art in source3/smbd/fileio.c

● Still in use today, despite drawbacks.
– If it goes wrong, it corrupts files.
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First tool use – Samba VFS !

Core smbd server
logic

Shared Library
Shared Library
Shared Library
Shared Library
Shared Library
Shared Library

open()

close()

file_lock()

close()

pwrite()
pread()

stat()
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The Samba VFS
● A completely configurable, easily 

programmed read/write path allowed an 
explosion of creativity inside Samba.

– Modules created to allow read-ahead on 
files, preallocate space, provide a recycle 
bin for deleted files, interface with anti-virus 
and many other options.

● Every code path that touches the disk can be 
trivially intercepted.

– Stackable design means only implement 
the calls you need.

– Freed up vendors and OEMs and users 
depending on Samba from having to patch 
the source code.

– Interface is currently kept stable within a 
major release (3.5.x, 3.6.x etc.).
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“zero copy” - sendfile()
ServerNetwork

SMB[2]readX
reply

SMB[2]readX 
request

Buffer
Cache

ReadX
request
check:
create
reply header

sendfile()
system
call

Zero copy
reply from
buffer cache
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“zero copy” - sendfile()
● Only done on oplocked files with a 

SMBreadX or SMB2 READ call.
– Does not work for signed requests.

● Header is created in smbd layer, then sent 
back to client.

– Data payload zero-copied from the buffer 
cache via a sendfile() call.

– Fun with different sendfile() 
implementations.

● Can really improve performance.
– Usually around 10%, depending on 

workload, disks, network, the way the wind 
is blowing etc.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

“zero copy” - recvfile()
ServerNetwork

SMBwriteX
reply

SMBwriteX 
request

Buffer
Cache

Valid WriteX
request
check

Zero copy
write into
buffer cache

Header

WriteX
data
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“zero copy” - recvfile()
● NOT a standard POSIX/Unix/Linux system 

call.
– Isilon (now EMC) implemented the initial 

code paths in Samba.

– Custom *BSD code implemented this in 
their kernel.

– Doesn't work with signed requests.

● Problems on other systems is sendfile() is 
not symmetric.

– Can't do zero copy from network to buffer 
cache.

● Linux tried to solve this by using splice() call.
– Idea is to use a pipe handle as a way to 

bounce the data into the buffer cache.

– Problem is it's slower than read/write paths.
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Asynchronous at last – POSIX 
AIO

ServerNetwork

aio_read() or 
aio_write()

SMBread or
SMBwrite
reply

SMBread or
SMBwrite
request

Buffer
Cache

Notification 
signalaio_return()

collects reply

Other SMB
Requests/replies

Other SMB 
call processing



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

Asynchronous at last – POSIX 
AIO

● Horribly complex interface. Dependent on 
POSIX-RT signals for notification.

– Linux kernel refused to implement, glibc 
implemented in userspace using pthreads.

– Linux kernel implements a Linux-specific 
API.

● Semantics of operations like “cancel” are 
unclear for a file server.

– Both SMB1 and SMB2 can cancel 
operations. SMB1 never does (at least for 
I/O). Unclear about SMB2.

● Older clients (pre-Windows 7) only issue one 
outstanding I/O per thread. Few programs 
actually do this.
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The dark ages - glibc AIO

● glibc implementation has two problems.
– As smbd changes effective uid, it can get 

into a situation where it has no permissions 
to deliver the notification signal.

● Smbd solved this via a horrible internal 
hack.

– glibc forces multiple outstanding I/O 
requests on the same file descriptor to be 
synchronous.

● This is NEVER what you want.
● Path fixing this was not accepted.

● Other systems (e.g. Solaris) don't have these 
issues.
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Driving AIO with libsmb

Server

Network

aio_read() or 
aio_write()

SMBread or
SMBwrite
reply

SMBread or
SMBwrite
request

Buffer
Cache

Notification 
signal

Followup
SMBread or
SMBwrite
request

aio_return()
collects reply
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Driving AIO with libsmb
● First implemented by Volker Lendecke – who 

proved you could saturate gigabit wire with 
SMB1 traffic.

– Idea is to pipeline multiple outstanding I/O 
requests up to the server declared max 
mux value.

– As one completes at the server, and is 
received by the client, the client dispatches 
the next one in the queue, keeping the 
pipeline full.

● Outstanding performance improvements.
– One of the initial touted benefits of SMB2.

– Windows Vista onwards implements a 
version of this in the SMB1 and SMB2 
redirectors.
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SMB2 and the new Windows 
redirectors

● Windows Vista onwards now includes an 
SMB1 redirector that will do pipelining of I/O 
requests (or maybe it's an improved explorer 
shell).

● SMB2 is designed to do multiple outstanding 
I/O, and can cope with quite large read/write 
sizes.

– Although SMB2.0 is still restricted to 64k.

● Supporting AIO is a requirement for any 
servers servicing these systems to get good 
performance.

– Depending on disk spindles available, CPU 
etc. etc.
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Enter Charles Darwin – 
Volker and vfs_aio_fork()

ServerNetwork

Dispatch function
to process pool

SMBread or
SMBwrite
reply

SMBread or
SMBwrite
request

sub-process

sub-process

sub-processsub-process

Shared
memory
Buffer

Other SMB
Requests/replies
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vfs_aio_fork()
● vfs_aio_fork is a very clever piece of code 

that hides a process worker pool behind the 
POSIX AIO interface.

– Uses pipes not signals for I/O completion 
notification.

– Passes file descriptor to operate on to child 
process via sendmsg() to create a new fd 
in the child.

● Module is resource intensive.
– Only really efficient on systems like Linux 

where creating processes is a relatively 
lightweight activity.

– Does introduce another memcpy, from the 
intermediate memory buffer into the 
outgoing packet buffer.
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The Renaissance – 
vfs_aio_pthread/vfs_aio_l

inux ServerNetwork

Dispatch function
to thread pool

SMB[2]read or
SMB[2]write
reply

SMB[2]read or
SMB[2]write
request

pthread

pthread

pthreadEvent notification
of completed I/O

Other SMB[2]
Requests/replies
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vfs_aio_pthread
● Module structure is shamelessly stolen from 

Volker's vfs_aio_fork code.
● Instead of processes, vfs_aio_pthread uses 

a pthread pool library (also written by Volker) 
to provide the back end asynchronous 
operation.

– Maximum pthreads in the process pool is 
set quite large (128), as performance 
depends on keeping as many disk spindles 
busy as possible.

– Idle threads are destroyed after 1 second, 
making this module capable of coping with 
large bursts of I/O requests, but keeping 
resource use low.

– Pthreads copy directly to/from 
outgoing/incoming packet buffers, avoiding 
the extra memcpy.
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vfs_aio_linux
● Module structure is shamelessly stolen 

vfs_aio_pthread, which inherits from Volker's 
vfs_aio_fork code.

● Instead of threads, vfs_aio_linux uses the 
native Linux AIO system calls to provide 
back end asynchronous operation.

– Theoretically (module still under test) this 
should be the most resource efficient way 
of providing asynchronous operation. 
Everything done asynchronously at the 
system call level.



O
p

e
n

in
g

 W
in

d
o

w
s

 to
 a

 
W

id
e

r
 W

o
r
ld

Let a thousand flowers 
bloom – tevent and 
asynchronous VFS

ServerNetwork

Request
parse 
logic

SMB2 reply

Any SMB2 request

VFS API

Async 
VFS 
request

Async VFS 
notificationReply

parse 
logic

Other
SMB2
traffic
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tevent and the asynchronous 
VFS

● Now we have a boilerplate asynchronous 
programming API/state machine – tevent, we 
can start splitting up the VFS into 
XXX_send() / XXX_recv() call pairs that 
complete asynchronously.

– This will make a “simple” VFS module more 
complex, but providing multiple examples 
should help.

– Core logic for much of the file server will 
have to be refactored – not a complete 
rewrite, more a code reorganization (but we 
have to do this anyway to add more 
SMB2+ features).

– Eventually the VFS won't resemble POSIX 
much.

● But will still be easier to use than making the 
entire smbd and all VFS modules thread-
safe :-).

● Copychunk might be the first new code to 
use this.
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Where are the numbers ?
● This is the slide with graphs showing how 

turning on AIO modules doubles Samba 
performance, uses less resources and 
generally makes life better.

– Unfortunately this is not that slide.

● Completely depends on available system 
resources.

– An example. Testing at an OEM who uses 
a low-powered CPU, adding AIO for write 
added 10% to performance, adding AIO for 
read lost 10% performance.

● Turns out zero-copy sendfile() is much more 
important on that box.

● Performance is very dependent on disk 
access pattern, client tests, number of 
spindles, network performance and a host of 
other things. Do your own tests.
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Questions and Comments ?

Email: jra@samba.org

mailto:jra@samba.org
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