
1 © 2012 The MathWorks, Inc.

MathWorks: A Case Study in NAS

Ira Cooper
Senior Systems Software Engineer
Samba Team

2

Who is MathWorks?

§  MathWorks develops MATLAB™ and Simulink™.
–  Including 80-90 Toolboxes!

§  We are a company of ~2500 people (~1000 developers)
across many sites:
–  United States – HQ
–  France
–  Germany
–  Japan
–  India

3

Who is MathWorks? 2

§  MATLAB™ and Simulink have Toolboxes in:
–  Model Based Simulation, Design & Verification
–  Finance
–  Statistics
–  Embedded Code Generation
–  Symbolic Mathematics
–  Biology
–  Automotive Engineering
–  Aeronautical Engineering
–  And many more areas.

4

What makes us an interesting site?

§  HPC Scale, but not typical HPC Style
–  Heterogeneous not Homogenous – NFS, SMB, SMB2.

§  Windows 7 32/64 Bit, Windows XP 32/64 Bit, Linux, OSX.

–  Small file I/O heavily metadata driven, instead of large block file
I/O.

–  Build times for a sterile build can be 24hrs+.
–  Thousands of linear hours of tests that need to be run.
–  Thousands of cores of compute power and growing constantly.
–  Enterprise environment to integrate into.
–  Huge amounts of automation.
–  Heavily cross protocol.

5

Additional Challenges

§  Third party products.
–  We act as a major integration point.

§  Performance + Monitoring
–  Our speed is critical to the company’s success.
–  Performance that can’t be quantified is not useful.

§  High quality and performance requirements.
–  A 1 in 1000 fault will be seen several times a week in our

environment, potentially.

6

Major Design Factors

§  High Reliability:
–  Must be able to support our 24hr+ builds.

§  Performance:
–  Over 100k+ mixed ops per fileserver is a start.

§  Cost:
–  F1 car, for the cost of a Scooter.
–  We can’t have our storage costs “out of control”.

7

Other Design Factors

§  Introspection
–  The ability to work with the server to determine where a given

issue is.

§  Bug Fixing / Verification
–  90% of the problem is usually finding the bug.
–  Alas the other 90% is convincing a vendor to fix it.

§  On their schedule
With their priorities

8

Design Decisions

§  High Availability
–  Do we really need HA running a batch system?

§  “Deal with the Devil”
–  Each server will go down one day a year, and we can’t say

which.
–  But the system will go twice as fast and cost much less.
–  For a batch system, this is a can be a good tradeoff!

§  If your users buy in.

9

Design Decisions 2

§  Simplicity
–  This allowed us to go from proof of concept to production in 6-8

months.

§  Timely support is critical
–  Support can be provided in house.
–  We know and understand the priority of our own issues better

than any vendor can.

10

Design Decisions 3

§  Open Source!
–  Introspection via reading the code is hard to beat.
–  The ability to directly collaborate with our “upstream vendors” at

a code level really simplifies things.

§  ZFS
–  RAID – RaidZ, RaidZ2, Mirror
–  Snapshots
–  SSD Read Cache

§  Not really tiering, but close enough

–  SSD Write Cache
§  Required due to the heavy NFS traffic. Synchronous write performance

matches our SSDs, max IOPS

11

Design Decisions 4

§  OpenSolaris/Illumos.
–  Very reliable.
–  dtrace and other analytical tools have proven very valuable

over time
–  The best Open Source platform for ZFS.

12

Design Decisions 5: Why Samba?

§  We couldn’t use Solaris Kernel CIFS when we started.
–  Also no SMB2.

§  Likewise seemed to be missing notify, which is a key
feature for us.

§  Samba has a very “mature” codebase.
§  Samba has a very strong community.

–  This leads to more features and bug fixes!

13

Starting Hardware

§  NexentaCore + Samba 3.6-GIT
§  SuperMicro Servers
§  We started at:

–  72GB RAM
–  24 Core – Westmere
–  3 L2ARC SSDs
–  2 ZIL SSDs
–  19 10k drives
–  All in 2U

14

Hardware Today

§  Current specs:
–  192GB RAM
–  24 SSDs
–  24 Core – Westmere

§  We are also building HA servers.
–  Head nodes have:

§  192GB RAM
§  24 Core – Westmere
§  6 SSDs

–  Trays:
§  2 ZIL
§  22 SAS 7200 RPM SAS drives

15

Results – Pre-production Qualification

16

Production: Overall Server OPS
April 27-28, 2012

17

Production: SMB2 OPS Break Down
April 27-28, 2012

18

Production: CPU Use
April 27-28, 2012

19

Production: Write OPS, Backend
April 27-28, 2012

20

Production: Read OPS, Backend
April 27-28, 2012

21

Production: Cache Miss Ratio
April 27-28, 2012

22

Production: System Call vs. Mutex Lock Miss
April 27-28, 2012

23

Production: Bandwidth – Bytes per Second
April 27-28, 2012

24

Results – Good!

§  Overall, the project is a major success story.

§  Management is very understanding of the effort
involved, because we are so hands on.

§  When there are problems in the lab, management

wants them to be on the server side!
–  Because they know we can fix it!

25

Results - Bad

§  SMB 2.0 Issues.

§  Solaris/OpenSolaris Platform issues.

§  Pure Samba issues.

§  Note: We’d expect issues with any platform we bring in.

26

Security Issue: DOS on Samba

§  This is the issue that caused the release of 3.6.3.

§  Pre-production testing showed a large spike in CPU
activity.

§  I’ll lead you through how we found the issue.

§  Credits to:
–  Youzhong Yang – MathWorks
–  Jeremy Allison – Google/Samba Team

27

Initial Problem:

§  The new Samba release is slow.

§  It is pegging our CPUs.

§  What’s wrong?

28

3.6-GIT: CPU Utilization

29

3.6.2-GIT: CPU Utilization

30

3.6-GIT: Syscall vs. Mutex

31

3.6.2-GIT: Syscall vs. Mutex

32

What’s wrong?

§  Something is “different.”

§  It isn’t the environment.

§  It must be the code.

§  It was noticed that new connections to the server were
taking too long.
–  We added a new metric!

33

3.6-GIT: Accept Calls per Second

34

3.6.2-GIT: Accept Calls per Second

35

Characterized!

§  Something is making smbd connect really slowly, and
take up too much CPU.

§  Test it!

§  Small set of smbclients looping against a dev server:

36

3.6.2-GIT in Dev: CPU Use
Connect Testing

37

3.6.2-GIT in Dev: Accept Call Rate
Connect Testing

38

3.6.2-GIT in Dev: Syscall Vs. Mutex
Connect Testing

39

What Was This Regression?

§  Clearly samba had never done this to us before.
–  We had the data to be very confident this was a regression.

§  Bisect?
–  Only as a last resort.

§  dtrace!
–  Profiling showed a clear issue in the talloc destructor being

fired on connection close.

40

Follow-up: Patch Submitted

§  I submitted a patch that fixed the main issue causing
the CPU DOS.

§  It was quite easy to find, once I knew where to look.
–  I ended up debugging it without the talloc output about leaks.

§  There was another related memory leak found by us;
that was fixed also.
–  Libumem was used to find the actual leak, it was faster than

valgrind.

41

Example Problem + Solution: Groups.

§  Solaris 10 only allowed a user to be in 32 groups.
–  If setgroups got called with more it killed the process.
–  The Samba Team thought this was a security issue: People

should be in the groups AD says.
–  The security issue wasn’t a concern for us.
–  So we patched our version and went about our life.

§  Key point:
–  In an open source world we can “agree to disagree”.
–  Work together as you can.
–  Agree to disagree as you must.

42

Example Problem: Create + Notify

§  SMB 2.002.
–  Compounded Create + Notify.
–  Every so often, our servers old weren’t replying correctly.

§  Causing disconnects
§  And builds to fall over. (Those 24hr ones.)

–  We actually diagnosed the issue. But no vendors took real
notice.

–  What can we do?
§  Even by the time we GOT a fix from a vendor, it only fixed the bug

sometimes.

–  We really wanted to rollout SMB2 badly, to speedup our builds.
§  Judged a “Critical Priority” within the company.

43

Solution: Create + Notify

§  Eventually, we decided to just do it ourselves.
–  We worked in house to develop an awful prototype patch for

Samba that showed the issue.
–  With the help of a few Samba Team members, we rewrote the

patch into something that is usable.
–  Then we worked with the entire Samba Team for final QA.
–  The whole process took about 2 weeks, if not less.

44

Conclusion

§  Samba + OpenSolaris has made our storage
infrastructure much more effective.

§  It has been a great way to give back to the community.

§  Working with the Samba Team has been a joy.

§  The powers that OpenSolaris and our team bring add a
unique capability to the Samba Team.

45

Questions?

?

46

Thank you for attending!

!

