

Samba as Active/Active HA-Service

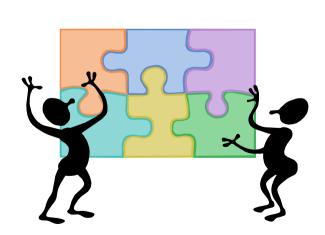
Dipl.-Ing. Thomas Merz

Date: 04/26/2006

merz@atix.de

- About ATIX
- HA-Cluster Basics
- Cluster Filesystem Basics
- Samba and Clusterfilesystem GFS
- Perspective

ATIX business segments


Consulting

- Linux in the datacentre (Cluster-solutions, HA)
- Storage networks
- Availability analysis / Catastrophe precaution

Services

- Competence Center
- Proof of Concept
- Project attendance
- Installation / Production
- Workshops

ATIX – couple of references

- Trade Fair Leipzig
 - Infrastructure for Unix/Windows user- and group data of the employees
 - High Availability platform
- IP-Tech
 - Infrastructure for Internetservice Provider (TOP 5, CH)
 - Business Continuance
- Trade Fair Munich International
 - Infrastructure for Webservices
 - High Availability platform
- Int. Pharma Group
 - Consulting for Pharma-IT Storage environment
 - Concepts for catastrophe precautions

Modular conception of Enterprise IT-platforms

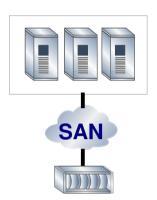
Application-Virtualization High Availability Server Storage Virtualization

MySQL

Mail

Oracle

Singelsystem Management

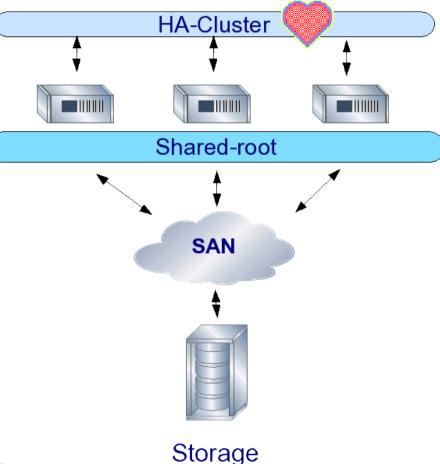


Case Study: NAS

File Server and proprietary NASAppliance Server

Active/Active NAS Cluster

- Reduction of capital lockup
- Better utilization of Ressourcen
- Protection of investment
- Scalability as needed
- Better Availability
- Industry Standard Hardware



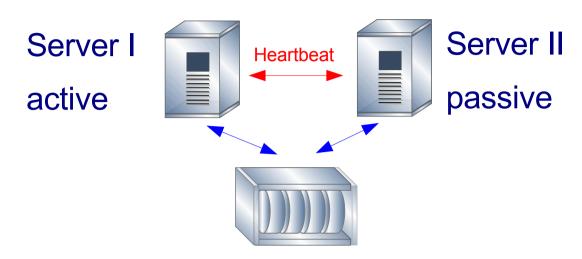
Example: Trade Fair Leipzig

NFS (Unix), Samba (CIFS)

- Key Features:
- Parallel NFS-Server
- Active/Active NFS, CIFS/SMB
- Active Directory Integration
- Dynamic Windows/Unix UserMapping
- ACL Support
- User, Group Quota
- ~ 300 User
- Home and Group Shares
- Replacement for a Windows HA-Cluster solution

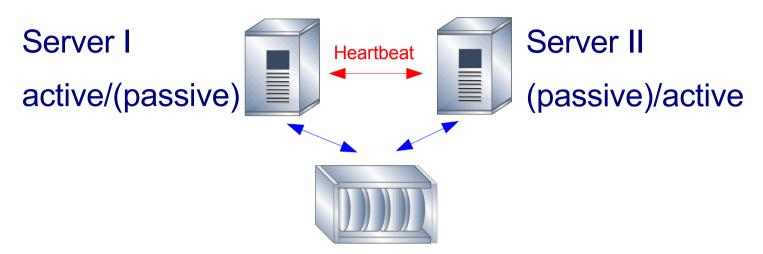
Customer's benefits: Performance-Increasement,

Reduction of costs, better availabilty



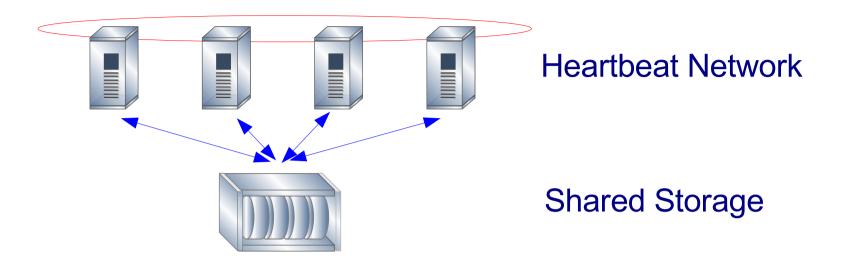
- About ATIX
- HA-Cluster Basics
- Cluster Filesystem Basics
- Samba and Clusterfilesystem GFS
- Perspective

HA Cluster Active/Passive


Concept:

- Only one node active at any time
- The second node is in stand-by mode
- No performance cutbacks in case of node failure

HA Cluster Active/Active


Concept:

- Each node hosts different services
- Each node is active and passive
- Performance cutbacks in case of a failure

HA Cluster N+1

Concept:

- More nodes as necessary are used (N+1)
- A node can be down without a performance cutback of services
- N+2-, N+3- concepts are possible

HA Cluster: Split Brain Problem

• Questions: "What happens, if the cluster falls apart?"

I'm the only one!

Server A
writes to the
filesystem

I'm the only one!

Server B
writes to the
filesystem

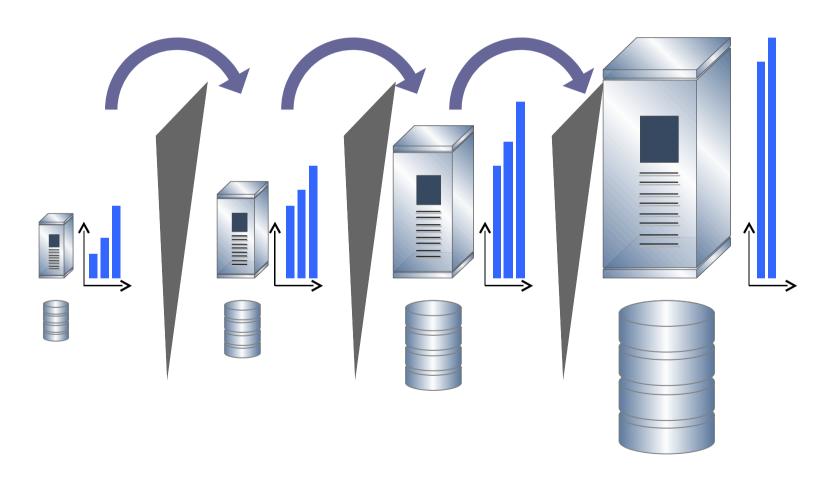
Data corruption ?!?

Stateless and Stateful Services

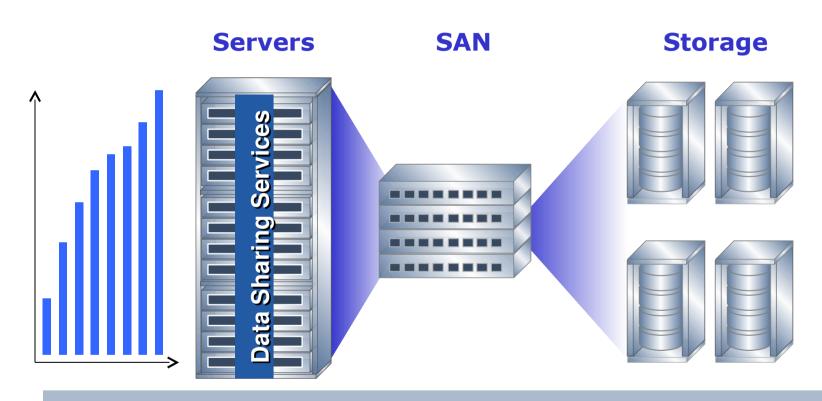
- Problem of <u>transparent</u> failover
- The service has to continue with the exact data states on the 2nd node as it "left" the 1st node
- Stateless services don't have data in memory
 - => Transparent failover is no problem
- Services saving conditions in memory need a way to make them persistent

Stateless and Stateful Services

- Stateful services:
 - Perfect example: DBMS
 - Solution: Write-Logs, Redo-Logs etc.
 - Services like NFS/CIFS can be stateful
 - HA-Software needs compatibility modes to failover stateful services correctly
 - Realization via resource types
 - Data loss happens if failover mechanisms don't support stateful services

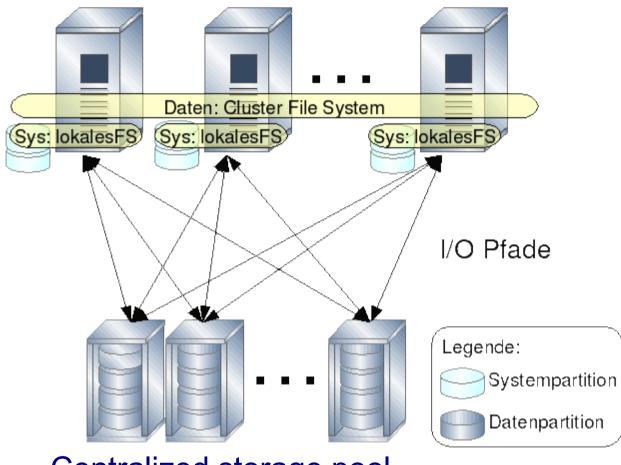


- About ATIX
- HA-Cluster Basics
- Cluster Filesystem Basics
- Samba and Clusterfilesystem GFS
- Perspective


Scalability

Scalability of a Storage-Cluster

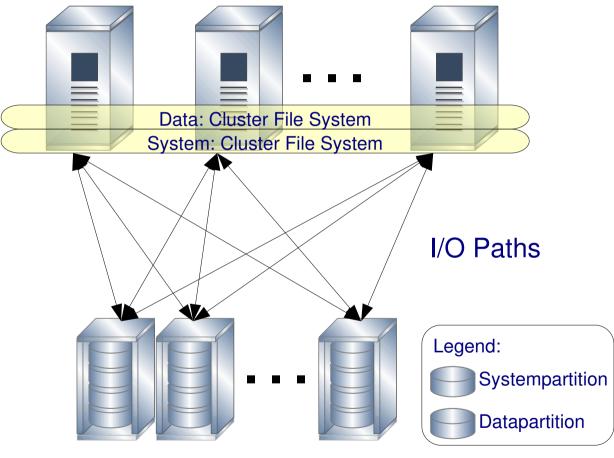
SAN + Linux + Data Sharing = Incremental Computing


- Incrementally and independently add compute, I/O and storage capacity
- Avoid architectural or application changes
- Lower cost of deployment and management

Shared Storage Cluster

Clusternodes with local disks

Centralized storage pool


- Data Sharing
- Peer to Peer communication
- Cluster Filesystem
- Server Cluster
 - Active/Active
- Storage Cluster
 - Storage Pooling
 - Volume Manager
- Storagenetwork (FC-SAN)
- Management ??

Diskless Shared Root Cluster

Clusterknoten without local disks

Centralized storage pool

- Data Sharing
- Shared Root Partition (/)
- Cluster Filesystem
 - Data
 - System
- SSI on FS Level
 - Management !!
- Scalability
- Performance
- Storage Cluster

Global Filesystem (GFS)

- Development since 1995
 - University of Minnesota Sistina Red Hat
 - Version 6.1
- Symmetrical cluster filesystem
- POSIX compatible filesystem
- Direct IO (Databases)
- HA Locking Server (GULM)
- Distributed Lock Manager (DLM)
- Online resizeable (no downsizing!)
- Context Dependent Path Names
- Cluster Volume Manager
- ACLs, Quotas, Multipath, ...

- About ATIX
- HA-Cluster Basics
- Cluster Filesystem Basics
- Samba and Clusterfilesystem GFS
- Perspective

Samba Challenges

Active/Active

- Servertype
 - Domain/ADS Member
 - PDC/ADS Server??
- Usermapping
 - Persistent (LDAP, RID-mapping, ..)
- Filesystem
 - ACLs
- Parallel Access???
 - Share1->Server1 Share2->Server2

Samba Challenges

Active/Active

- TDB-Files
 - GFS vs. no GFS
- Single Sign-On for Windows und Unix/Linux
 - Windows user (PDS/ADS) -> Server type
 - Unix user (passwd, yp/nis, Idap) -> Server type
- Virtual name and server name
- Config file per share vs. global config file
- Winbind failover vs no winbind failover

Samba and Cluster Filesystems

- Posix-ACLs map Windows rights to Unix filesystems
 - Windows clients differentiate between NT-ACLs and Windows 2000 ACLs (acl compatibility = auto|winnt|win2k)
- Temporary Samba files (tdbs) need to be host dependent in a cluster setup (CDSL)
 - They can also be stored in the RAMFS to gain better performance

Samba Active/Active

- Samba Active/Active on the same share?
 - Different servers should not export the same shares in r/w mode (ro makes sometimes sense)
 - Parallel r/w is no problem for the cluster filesystem
 - Parallel r/w is a problem for Samba itself, if the upper level application does not have its own locking mechanisms. Samba has no "cluster wide" locking mechanism
 - With the help of a cluster filesystem, shares can be moved easily between different servers

Usermapping

- What ist mapped?
 - Windows user IDs (SIDs) to Unix user-IDs (winbind)
 - Static tables
 - Via LDAP
 - Via RID mapping
 - Persistent mapping is very important for HA-clusters
 - Unix user to windows user ID mapping is done repeatable & dynamically

Single Sign On

- Identical Users (Names, passwords and identities)
 - Linux must be able to compare against "Windows passwords" (Kerberos)
 - PAM, Winbind
 - SIDs/RIDs need to be mapped to Unix UIDs/GIDs
 - Static mapping e.g. Administrator=>root
 - Automated mapping e.g.
 - Windows User thomas => Unix User thomas

Single Sign On

- Samba offers IDMap Backends for user authentication
 - Standard: TDB
 - Mapping is not persistent
 - Alternative: LDAP
 - Certain schema with Unix UserID and Windows SID
 - Alternative: RID mapping
 - Windows User ID has a SID part and a RID part
 - The RID part is mapped repeatable to Unix UIDs

Some Samba Pitfalls

Servernames and VIPs

- The servername is associated with a SID and is registered as computer within the domain
- The virtual clustername (the virtual IP) must not be identical to the servername

Config files

- Standard: One config file for a virtual clustername/virtual IP setup (multiple smbd/nmbd services set up on the server, one per failover group)
- Alternative: One config file is used for all virtual HA-Samba configurations and adjusted if failover is necessary (one smbd/nmbd service running on the server)

Winbind Failover vs. no Failover

- Each Samba service uses the same instance of winbind
 - Standard: All Samba services use this "centralized" winbind
 - Winbind "does not failover"
- Each virtual clustername/virtual IP samba instance uses its own version of winbind
 - Winbind "fails over" if the associated virtual clustername fails over

- About ATIX
- HA-Cluster Basics
- Cluster Filesystem Basics
- Samba and Clusterfilesystem GFS
- Perspective

Perspective

- Using GFS and sharedroot cluster configurations are changeable while the cluster is online
- CIFS and NFS are only some of the possibilities such a cluster offers
- If Samba could handle file locking on file basis in cluster compatible way, new cluster types would be possible

Any Questions?

Thank you!

Einst 8571

Atix GmbH

Einsteinstr. 10

85716 Unterschleißheim

www.atix.de

info@atix.de

