
May 5, 2006

Delegating Samba
Administration

Jeremy Allison
Novell, Inc.

Slide 2

Why Samba needs to change

● Windows allows delegation of Administration tasks by
allowing groups to be assigned “capabilities”.
● Example : “Share Directories” capability is assigned to

“Administrators” and “Server Operators” by default.

● Windows administrators are used to being able to
create shares by navigating to a directory and
selecting “share this folder” from a menu.

● Each capability is independently assignable to a user
or group.
● The “root” concept is effectively split into multiple roles.

Slide 3

How Samba needs to change

● Samba needs to become easy for Windows trained
Administrators to configure and use.

● One way to do this is to improve the RPC support on
the server so Windows administration tools will
configure Samba servers.

● This work is currently in progress, however it requires
some considerable set-up on the server side.

● Groups need to be mapped into the Samba group database.
● Privileges need to be assigned on a group basis.
● Complex scripts are needed to manipulate smb.conf and the

underlying UNIX databases.

Slide 4

How Samba needs to change
(continued)
● One underlying problem is that any process that can

write to smb.conf can become root on the system.
● In addition, only a file/directory owner (or root of

course) can change permissions in the filesystem.
● Windows allows group ownership of directories without a user

owner, so gets around this problem.
● This simple change allows a very powerful feature –

delegation of permissions administration to a non-
administrative group.

● We need to enable the “delegate and forget”
administration model.

● Give a group the rights to create shares and administer the
permissions within them.

Presenting “usershares”

Slide 6

What are usershares ?

● A usershare is a small text (*) file that exists in a
special directory (usually within the Samba config tree)
that defines a share.

● As with all good UNIX ideas, it can be edited with “vi” ☺

● Deliberately designed not to be parsed as part of
smb.conf.

● Very truncated set of verbs – no “force user” allowed.

● Designed to be created locally by non-root users.
● smbd must defend itself from malicious file links and malicious

file contents.

● Allows creation of shares to be delegated to a UNIX
group.

Slide 7

A sample usershare file

 #VERSION 1
 path=/home/jeremy
 comment=This is a usershare
 usershare_acl=S-1-1-0:R

Slide 8

A sample usershare file

● The first line allows file revisions (we'll never make
that mistake again).

● The “path” and “comment” lines are identical to the
way they're used in the standard smb.conf.

● The “path” parameter must be absolute (ie. start with “/”)

● The “usershare_acl” entry specifies the ACL
associated with the share.

● Permitted values are “R” for read-only, and “F” for full access.
● SID is used instead of UNIX uid/gid so smbd doesn't have to

do uid -> SID mapping on parsing the file.

● Should we allow “guest ok = yes” ?

But “is it safe” ?

Slide 10

Protecting smbd

● In order for smbd to read a user-writable directory for
configuration information it has to take many
precautions.

● The directory containing the usershare files could
have been filled with millions of bogus usershare files,
leading to a DOS attack.

● The usershare files might by fifo's or device files that
would cause smbd to hang on reading them.

● The usershare files might by symlinks pointing at such
things elsewhere on the filesystem.

● A usershare file might be gigabytes in size, leading to
a memory DOS.

Slide 11

The smb.conf usershare parameters

● “usershare path” points at the directory on the system
containing the usershare files. It must have special
characteristics.

● Must be owned by “root”, have the “t” bit set on its
permissions, and not be writable by “other”.

● The “root” ownership means only root can have arbitrary
access to it.

● The “t” bit prevents different users overwriting others
usershare files (only the creator can modify or delete them).

● Only allowing root and the group owner to write into the
directory allows administrator control of who can create
shares (only members of the owning group).

Slide 12

More smb.conf usershare parameters
● “usershare max shares” is smbd's attempt to protect

itself from a “too many files in the directory” DOS.
● Until you fire the person who did it ☺

● smbd allows 20% of “usershare max shares” entries in
the usershare directory to be invalid, and after that
stops processing the directory.

● Set “usershare max shares” to the number of usershares you
want to allow and don't worry about the DOS attacks until
users complain.

● “usershare owner only” if set causes smbd to check if
the directory being shared is the same as the creator
of the usershare file, and ignore it if not.

● Allows owner based restrictions on what can be shared.

Slide 13

The final parameters
● "usershare prefix [allow|deny] list" are a standard

smb.conf list parameter which restrict the paths being
shared in a usershare to either start with, or to be
prohibited from starting with, the given absolute path.

● Phew – too hard to explain – here's an example :
● “usershare prefix deny list = /etc,/dev,/tmp”
● “usershare prefix allow list = /home, /data, /space”

● “usershare template share” causes all created
usershares to become copies of the given share
(already defined in smb.conf).

● Allows extra parameters to be set (eg. “guest ok = yes”).
● If you don't want the template to be a real share mark it as

“-valid = False”.

How do I create a usershare ?

Slide 15

First set up your smb.conf

● Add “usershare path = /etc/samba/usershares”
● Create /etc/samba/usershares and change the group

owner to the group who should have the ability to
create usershares (eg. serverops).

● Set the permissions to be “01770”.
● Tell smbd how many usershares you will allow by

adding “usershare max shares = 100”.
● Now you need some usershares to be created....

Slide 16

New “net” command options.
 % bin/net usershare help

 Usage:
 net usershare add <sharename> <path> [<comment>] [<acl>]

to add or change a user defined share.
 net usershare delete <sharename> to delete a user defined

share.
 net usershare info [-l|--long] [wildcard sharename] to print info

about a user defined share.
 net usershare list [-l|--long] [wildcard sharename] to list user

defined shares.
● net usershare help

A brief demo.......

 % net usershare add jrahome /home/jra

Slide 18

Gnome and KDE Integration

● Support has been added to Nautilus (Gnome) and
Konqueror (KDE) to right click on a directory and
select “share this folder”.

● Invokes “net usershare” command underneath the covers.

● NASTY BUG: net command is not internationalized.....
● Samba user toolset needs gettext() support urgently.

● Windows “Administrators” will finally feel at home.
● Well the ones that need GUI support anyway ☺.

Slide 19

Slide 20

Delegating group permission changes

● In Windows, a common use case is to create a share
for a group of users, and make it owned by that group.

● The inheritance model is that all files created within that share
inherit the group ownership.

● Becomes a “shared space” for that group.
● No Administrator support needed to set

ownership/permissions.

● Samba can do the same thing.
● Not integrated with “share creation” dialog unfortunately.

Slide 21

Setting up a share with delegated
permissions

● Create the directory (eg. /data/foo), change the group
ownership to the allowed group (foo).

● Set the directory permissions to : 2770 (setgid bit, owner and
group all permissions).

● Create the smb.conf stanza as follows :

 [foo]

 path = /data/foo

 acl group control = yes

 dos filemode = yes

 (acl group control is now deprecated).

Slide 22

Setting up a share with delegated
permissions (continued)

● The SETGID bit causes all files and directories
created within that directory to have an owning group
identical to the containing directory (so it propagetes
down the tree).

● Created directories also propagate the SETGID bit.

● The “acl group control” or “dos filemode” parameters
allow smbd to override POSIX permissions to allow
any connecting user in the owning group to modify the
ACL permissions on the file or directory.

Slide 23

Conclusions

● We can get closer to an “ease of use” Windows style
of administration for Samba.

● Need more glue code to make everything seamless.
● We need to do this to move Samba forward – we already have

all the early adoptors.

● “usershares” could already be done via clever enough
scripting of “add/delete share command”

● No one has shipped something that automates this in a way
as easy to use as usershares.

● More “wizard” like functionality needed (not
necessarily from Samba) to make setting up shares
easier.

Questions and Comments ?

