
Future extensions to CIFS
(CIFS to the desktop)

Jeremy Allison

Samba Team

(or the death of NFS :-)

2

Why do we
need

extensions to
CIFS ?

3

The purpose of CIFS
extensions

• CIFS is the dominant desktop file sharing protocol.

• Most IT departments don't want more than one file sharing
protocol to troubleshoot.

– Most IT departments don't want to add new client code to
Windows.

• In order to enter the desktop world, new desktops must live
within a CIFS-only world.

– NFS, even NFSv4, will not gain any traction on the
desktop.

4

The purpose of CIFS extensions

• Linux and MacOS X desktops are the only viable competitors to
Microsoft clients.

• Extending CIFS can provide value-add differentiators for CIFS
server vendors.

• Creating a “standard” set of extensions can prevent
fragmentation in the CIFS vendor marketplace.

– Vendors can compete on quality and performance, rather
than non-interoperable variants

5

The history of
CIFS

extensions

6

The history of CIFS
extensions

• Early attempts to extend CIFS were in the OS/2 and early
UNIX authentication documents.

– Part of the OpenGroup specifications.

– Mechanism specified for using UNIX password hashes.

• Next Thursby added new TRANS2 calls to cope with MacOS 9
resource forks and desktop database.

– Reserved space between 0x300 and 0x399 in the TRANS2
space.

– Only specification available seems to be an old Samba
contribution (GPL).

7

The history of CIFS extensions

• First serious non-Microsoft changes were from the original
(non-insane) SCO, then HP with the UNIX extensions
document (1997-2000).

– Created from discussions on a mailing list about what
would be required for UNIX to UNIX CIFS.

• A milestone was an agreement from Microsoft to carve out an
extension space for CIFS !

– After the initial CIFS UNIX capability bit was used by
Microsoft for “extended security”.

8

The history of CIFS extensions

• SNIA document included documentation of HP UNIX
extensions, but this document is not usable.

– Conditions preclude use of the SNIA document for any
commercial purpose (explicitly stated).

– Check out the original (Microsoft Word!) document on the
Web instead.

– The Samba server adopted the UNIX extensions in the
2.2.x series, but not seriously maintained until CIFS Linux
client was adopted into the 2.6 kernel.

9

Current CIFS
extensions

10

What are the current CIFS
extensions ?

• The original intent was to create a dialect of CIFS that allows
full UNIX to UNIX semantics.

• This meant allowing a diskless UNIX client workstation to
remote-boot from a CIFS server.

• Client detects the presence of UNIX extensions in a bit
(0x800000) in a NT negprot reply.

– Client is then free to use a new set of TRANS2 calls,
between 0x200-0x2FF.

11

What are the current CIFS
extensions ?

• Most obvious changes were the addition of a UNIX_FILE_BASIC
struct containing the UNIX-specific data not found in a CIFS
directory entry.

– TRANS2_SET/GET_FILE_INFO calls use this to set and query
UNIX info.

• In addition, TRANS2 info levels to support UNIX symlink and
hard links were specified.

– NT_RENAME call can also create hard links, used for the NT
POSIX subsystem.

12

What are the current CIFS
extensions ?

• Some problems with this original spec, no on-the-wire
mappings were specified for such things as UNIX permissions.

– No block size was specified for the “number of blocks”
returns in the UNIX_BASIC_INFO.

– Somewhat HPUX-on-the-wire specific.

• After some review an “extension version” request was
added, which returns a capabilities set for future expansion.

13

Difficulties in interpretation
• Symlinks present a particular problem for CIFS extensions.

• Allowing arbitrary target paths on a “create symlink” may
allow Windows clients to break out of a share-specific area of
the filesystem.

– Due to server resolution of symlinks on Windows client
lookup.

– NFS clients don't suffer from this as symlink look-ups are
client side only.

– Vendor specific changes (Microsoft SFU product uses
Extended Attributes to store symlinks).

14

Current issues - POSIX
compliance

• Unix Extensions can't support full POSIX compliance due to
differences in byte range locking semantics.

– Do we want to implement POSIX locking ?

– Compatible subset required.

• Renaming of open files also not supported by CIFS due to deny
mode semantics.

• POSIX ACLs were needed. Capability bit already defined.

– Simple GET/SET calls were sufficient, ignore modify race
conditions.

15

Current issues – case sensitivity

• CIFS already has a “case insensitive” flag bit available in the
standard protocol header.

– Ideal situation would be UNIX clients turn this bit off.

– Problem is earlier Microsoft clients (pre-Windows NT) don't
bother to set this bit.

– Samba auto-detects client type to determine if this bit
should be obeyed.

• Windows file servers inconsistently obey this bit (Windows
2000 does, Windows 2003 needs a registry change).

16

Current issues – user and
group identity.

• UNIX extensions currently can return a uid or gid that only has
meaning on the server.

– Similar issue to NFS, user and group databases are expected
to be consistant over clients/servers.

• CIFS has traditionally specified user and group lookup
functions.

– CIFS takes a kitchen sink approach to solving file sharing
issues. Such extra functionality could be added into the
UNIX version of CIFS.

17

Current issues – character
mapping.

 Several characters valid in UNIX filenames are invalid in CIFS
filenames.

 These are :

 : < > | ? \ *
 CIFSFS and Windows (services for UNIX) map these into the

“user defined” UNICODE space, by prefixing them with 0xFF.
 Samba server doesn't currently support this (until I get back

from this conference).

18

Current state of the UNIX
extensions

• POSIX ACLs GET/SET calls recently (Samba 3.0.x) added.

– Developed in conbination with Steve French's Linux CIFSFS
Client code.

– Test code to getfacl included in smbclient.

– No set code in smbclient as I didn't want to write the parse
code for POSIX ACL semantics.

• Uses UIDs/GIDs on the wire, don't mix up SIDs with POSIX style
calls.

19

Current state of the UNIX
extensions

• Makes CIFS UNIX file sharing closer to SVR3 RFS than NFS.

– Although NFSv4 is re-inventing many of the same
techniques.

• Similar to NFS in that device files are not remoted, some
operations are still client-side look up.

– Symlink handling

– Device file accesses.

• Single or multiple TCP socket connections, variety of ways to
multiplex user connections.

20

Available Client
implementations - Linux.

• Steve French is maintaining the Linux CIFSFS client for the 2.6
kernel.

• Closest match to Samba server code as they are developed
together.

– Sometimes client code comes first, sometimes server.

– Use identical header file definitions.

• Tested with SPECFS filesystem test tools.

– Currently passes POSIX filesystem tests with the exception
of file locking.

– Steve is currently working on performance.

21

Available Client
implementations – MacOS X.

• Conrad Minshal at Apple is developing the MacOS X CIFS client.

• Tested mainly against Windows servers (Apple focused mainly
on the desktop market).

• MacOS X is chosing Windows style ACLs rather than POSIX.

– No current plans to add POSIX ACL extensions.

• Source code published in Darwin.

• Apple reluctant to participate in community development.

22

Available Client
implementations – HPUX

• Eric Raeburn is developing the SHARITY NFS to CIFS gateway
client on HPUX.

• Proprietary code, although works closely with Samba.

• Active participants in UNIX extensions process.

• Not currently using ACL extensions or EA's.

– No EA's in NFS

– No standard POSIX ACL protocol in (HPUX) NFS.

• HPUX only solution.

23

Where do we
go from here ?

24

Future CIFS extensions

• Add POSIX file locking.

– Should conflict with CIFS locks but keep locked ranges
separate.

– Allow lock range split/merge to obey POSIX specs.

– File access should ignore POSIX locks (advisory only).

– Lock owner call (getlock) is needed.

• UNIX (Linux) style EA's (extended attributes) not supported
yet, only case insensitive DOS style EA's.

– No EA standard in UNIX. Current implementations are
Linux, SGI Irix, FreeBSD.

25

Future CIFS extensions

• Add POSIX open()/mkdir() calls.

– Return current attributes.

– Saves round trip to look up after open.

• Add POSIX rename() and unlink() calls, allowing POSIX
semantics.

– rename() should allow rename of open files.

– unlink() should allow deletion of open files.

– Should we take share mode into account here ?

• Try not to make this too Linux specific.

• At what point is this not CIFS anymore ?

– UNIX errno returns ?

26

Future CIFS extensions

• Create a new UNIX NSS interface named pipe (\\UNIX_NSS ?).

– This will allow clients to completely forward uid/gid to
name translation to a file server, allowing a consistant
name space.

– Allows one machine authentication (probably krb5) to
control access to all name services.

– On the wire specification probably based on a NSS call
linearization.

– Allow multiple uid/gid -> name, name-> uid/gid lookups for
efficiency.

27

Feature enhancements –
encrypted CIFS

• NFSv4 has this, so we need it too ☺.

• Bootstap encryption using the krb5 session key, also used
for SMB signing.

– We need a way to request re-keying within a long lived
session (new TRANS2 call ?).

– Hard to add new error codes, so have a counter giving
the number of packets this session key is valid for.

• We need security review of any protocol we invent.

28

Integrating Windows clients
into extended CIFS

• No one wants to add new Windows client code.

– Definitely a “hack” solution for customers needing
encrypted transport, not a mass market solution.

• Investigate using Windows client AFS code to create a CIFS to
CIFS proxy, although this is not a high priority for the Samba
developers.

• We are attempting to hijack this protocol. This is our only
chance....

29

Far from being the death of
CIFS....

It's alive !

30

Questions and
Comments

