

samba eXPerience 2005 Göttingen, Germany 4th May 2005 Active Directory network protocols and traffic

Jean-Baptiste Marchand <Jean-Baptiste.Marchand@hsc.fr>

Agenda

- Introduction
- Active Directory network procotols overview
- Capturing Active Directory network traffic
- Analyzing Active Directory traffic with ethereal
- Demonstration
- Conclusion
- References
- Greetings

Introduction

- Some good reasons to study Active Directory network protocols
 - Demystify Active Directory, looking at the protocols on the wire
 - Help to analyze network traces for troubleshooting purposes
 - Discover protocols involved in typical Active Directory deployments
 - Useful to implement a network security policy
- Why is it possible today?
 - Active Directory network protocols have been documented over the years and are now well understood
 - ethereal, the open-source network analyzer of choice
 - has an excellent support of Active Directory network protocols
 - can be used effectively to analyze network traffic in AD domains

Active Directory network protocols

- Active Directory domains rely on Internet standard protocols
 - DNS
 - LDAP
 - Kerberos V
 - SNTP
- NT 4.0 domains protocols are still used
 - SMB/CIFS
 - MSRPC
- Kerberos V is Active Directory network authentication protocol
 - Replaces NTLM authentication protocol
 - SMB, MSRPC, LDAP and DNS all support Kerberos authentication

SC Capturing Active Directory network traffic

- Capturing network traffic
 - Check local policies and procedures to determine if network sniffing is allowed
 - Depending on the network topology, might require to configure port mirroring on network devices
 - Network sniffing is possible on typical Unix systems supported by libpcap
 - If supported by the OS, do not run the sniffing tool (ex. tcpdump) as root
 - Recent Windows systems have a command-line network sniffing tool: netcap.exe (in netmon capture format, supported by ethereal)
- Analyzing network traffic
 - ethereal (http://www.ethereal.com/) is the network analyzer of choice for all usages, including for Windows network protocols

Using ethereal to analyze network traffic

- Analysis features
 - Protocol Hierarchy function : overview of network protocols found in a network trace
 - Conversations functions: overview of conversations at the different network levels (Ethernet, IP, TCP/UDP)
- Filtering features
 - ethereal display filters: used to limit displayed frames
 - Most ethereal dissectors give access to filterable fields, corresponding to data fields decoded in frames
 - Ex : <u>smb.cmd</u> (SMB command found in the header of a SMB frame)
 - Prepare a Filter and Apply a Filter functions

C Display filters for Active Directory protocols

- Useful display filters for Active Directory protocols
 - dns : DNS queries and responses
 - smb: SMB sessions
 - dcerpc : MSRPC traffic
 - dcerpc && smb (ncacn_np), dcerpc && tcp && not smb(ncacn_ip_tcp)
 - ntp : (S)NTP traffic
 - Idap && udp: CLDAP traffic
 - Idap && tcp : LDAP traffic
 - kerberos && udp : Kerberos AS and TGS exchanges
 - kerberos && tcp : Kerberos AP exchanges
 - kerberos && smb : SMB sessions authenticated using Kerberos
 - kerberos && dcerpc : DCE-RPC sessions authenticated using Kerberos
 - kerberos && Idap : LDAP sessions authenticated using Kerberos

DNS and CLDAP traffic

- DNS traffic (dns)
 - SRV records lookup
 - service._protocol.DnsDomainName
 - Ex: <u>ldap._tcp.sitename._sites.dc._msdcs.domainname</u> to locate a domain controller in the current site
 - Dynamic updates
 - Can be authenticated with Kerberos, using GSS-TSIG (RFC 3645)
- CLDAP traffic (Idap && udp)
 - Connection-less LDAP (389/udp)
 - Used to query registered Active Directory domain controllers, previously identified with SRV records lookup
 - Can be manually reproduced: C:\>nltest /dsgetdc:domainname

Active Directory MSRPC interfaces

- MSRPC (Microsoft implementation of DCE-RPC) transports
 - ncacn_np: DCE-RPC over SMB (named pipes)
 - ncacn_ip_tcp: DCE-RPC over TCP
 - Endpoint mapper service (epm), to discover dynamic TCP ports
- MSRPC Active Directory interfaces
 - Isass.exe RPC interfaces
 - samr : SAM (Security Account Manager) RPC service
 - Isarpc : LSA (Local Security Authority) RPC service
 - netlogon : netlogon RPC service
 - drsuapi : Active Directory RPC access service
 - These 4 RPC interfaces can be restricted to a single TCP port
 - The endpoint mapper then always answers with the same static port
 - http://support.microsoft.com/?id=224196

MSRPC traffic : ncacn_np transport

- MSRPC traffic : ncacn_np transport
 - SMB session to the IPC\$ share (ncacn_np MSRPC transport)
 - ethereal display filter: dcerpc && smb
 - Named pipes name identify the MSRPC interface
 - \pipe\lsarpc : lsarpc interface
 - \pipe\samr : samr interface
 - \pipe\netlogon : netlogon interface
 - ncacn_np transport used during an Active Directory join and unjoin process
 - Access to the samr interface via \pipe\samr: computer account administration
 - Domain controllers access to lsarpc and netlogon interfaces
 - Including for netlogon operations added in Active Directory

MSRPC traffic: ncacn_ip_tcp transport

- MSRPC traffic : ncacn_ip_tcp transport
 - ethereal display filter : dcerpc && tcp && not smb
 - MSRPC interfaces
 - epm : endpoint mapper (135/tcp), to discover allocated dynamic ports
 - netlogon : used to establish the netlogon secure channel at system startup
 - drsuapi
 - Used by domain members and domain users to query Active Directory using MSRPC instead of LDAP
 - DRSCrackNames(), implementing the DsCrackNames() API
 - Used for Active Directory database replication between domain controllers
 - frsrpc
 - Used for Active Directory file replication between domain controllers
 - These interfaces can be configured to listen on fixed ports
 - One TCP port for samr, Isarpc, netlogon and drsuapi
 - One TCP port for frsrpc

Group Policy: introduction

- Group Policy
 - Active Directory mechanism to centrally deploy software configuration
 - Individual settings are defined by Group Policy Objects (GPO)
 - Two types of GPOs
 - Settings affecting the computer configuration
 - Settings affecting the user environment
 - A set of GPOs is often designated as a GPO
 - GPO are linked to an Active Directory container
 - Linked to an AD site
 - Linked to an AD organizational unit
 - Linked to an AD domain
 - Precedence order: L S D OU
 - L(ocal GPO) S(ite GPO) D(omain GPO) OU (Organizational Unit GPO)

Group Policy traffic (1/2)

- Group Policy
 - GPO (machine settings) are processed when a domain member server starts
 - GPO (user settings) are processed when a domain user logs on a domain member server
 - GPO are then frequently refreshed
- Group Policy in Active Directory
 - Linked GPO are stored in Active Directory
 - LDAP unencrypted queries (gPLink and gPOptions attributes) to determine linked GPO (site-level GPOs, domain-level GPOs, OU-level GPOs)
 - ethereal display filter: Idap.attribute = "gPLink"
 - gPLink contains the DN where the GPO is defined in AD
 - Additional LDAP query for several attributes of returned DN entry, including gPCFileSysPath

Group Policy traffic (2/2)

- Group Policy : sysvol SMB share
 - GPCFileSysPath points to a DFS path referring to the sysvol share
 - \\domain_name\sysvol\domain_name\Policies\GPO_GUID\
 - \gpt.ini file
 - Machine, \User subdirectories
 - Adm subdirectory
- Group Policy SMB traffic
 - DFS referrals to locate the sysvol share
 - Reading of the gpt.ini file
 - Depending on the content of gpt.ini, additional files are retrieved
 - Machine\registry.pol, \User\registry.pol
 - Additional files, depending on the content of the .pol files

CMSRPC traffic between AD domain controllers (1/2)

- AD database replication
 - Multi-master replication topology: changes can originate from any DC
 - Active Directory intra-site replication use MSRPC (ncacn_ip_tcp)
 - Operations in the drsuapi interface
 - DRSReplicaSync() : send a change notification to a replication partner
 - DRSGetNCChanges()
 - Obtain updates for a specified naming context (NC = partition of the AD database)
 - Operations parameters are encrypted
 - ethereal Kerberos decryption supports DCE-RPC data decryption!
 - In addition, replication data may be compressed
 - Active Directory replication administration tools
 - repadmin.exe: CLI interface, with many options
 - replmon.exe: GUI monitoring interface

MSRPC traffic between AD domain controllers (2/2)

- AD File Replication Service (FRS)
 - Multi-master replication at the file level
 - Used to replicate sysvol share files
 - frsrpc MSRPC interface (ncacn_ip_tcp)
 - Setting the FRS MSRPC port: http://support.microsoft.com/?id=319553
 - Updates sent using the FrsRpcSendCommPkt operation
 - Data is encrypted
 - ethereal has a stub dissector for the frsrpc interface

ethereal Kerberos decryption feature

- One of (the many) ethereal "killer" features
 - ethereal can be linked with a Kerberos implementation (currently, Heimdal on Unix)
 - A keytab file can be used by the Kerberos dissector to decrypt
 - Kerberos exchanges with the KDC : AS and TGS sub-protocols
 - Kerberos authentication between Kerberos principals : AP sub-protocol
 - → Authentication in SMB, LDAP, MSRPC, DNS (using SPNEGO)
 - Try to decrypt Kerberos blobs and Kerberos keytab file preference settings
 - Recently, decryption of LDAP and MSRPC payload has been added
 - Kerberos session keys are added in the context of ethereal Kerberos decryption module
 - These session keys can then be used to decrypt payload exchanged between principals
 - Some primitive network analyzers apparently do not support Kerberos decryption

C Ethereal kerberos decryption applied to Active Directory network traffic

- Microsoft Kerberos implementation
 - Uses by default the rc4-hmac encryption algorithm
 - Kerberos principals keys are NT hashes
 - Domain account NT hashes can be easily extracted from a AD domain controller using the pwdump{2,3,4,5} utility
 - requires local administrator privileges
 - A keytab entry can be created, given the principal name and the NT hash
 - -H option of the ktutil's add command (in recent Heimdal snapshots)
 - \$ ktutil -k keytab add –principal=mydc\\$@KRB.REALM -e arcfour-hmacmd5 -H –password=NT_hash_in_hex -V 1

Demonstration

- Network trace of a domain join process
 - Active Directory Domain controller location process (DNS + CLDAP)
 - Computer account creation (samr)
 - Kerberos tickets decryption (including MS Kerberos PAC)
- Network trace of network traffic between domain controllers
 - drsuapi replication traffic (decrypted)
 - frsrpc replication traffic

Conclusion

- ethereal is the perfect tool to analyze Active Directory network traffic
 - Excellent support of all AD protocols (including SMB and MSRPC)
 - The Kerberos decryption feature is a must-have tool
- Looking at Active Directory network protocols on the wire is required in many different situations
 - Troubleshooting issues
 - Active Directory internals digging
 - Network security auditing, including for penetration tests
- Easy to experiment!

References

- ethereal
 - http://www.ethereal.com/
 - http://wiki.ethereal.com/
- Windows network services internals
 - http://www.hsc.fr/ressources/articles/win_net_srv/
- Active Directory network protocols and traffic (September 2004)
 - http://www.hsc.fr/ressources/presentations/ad_proto_traffic/
- This presentation is available at
 - http://www.hsc.fr/ressources/presentations/sambaxp2005/ad_traffic.pdf

Greetings

- Hervé Schauer Consultants (HSC)
 - French IT security consulting agency I work for
- ethereal team and particularly Ronnie Sahlberg
 - Prolific ethereal developper!
 - Implementer of many MSRPC dissectors, including auto-generated dissectors using some of Samba4 IDL files
 - Implementer of the Kerberos decryption feature
- Samba team
 - Jim McDonough and Anthony Liguori's work on CLDAP
 - Stefan Metzmacher's work on the drsuapi MSRPC interface

