Samba KCC: Saying No to Full Mesh Replication

Garming Sam
Catalyst IT, Samba Team
What is the KCC?

- Knowledge consistency checker
- Used to manage replication connections in AD
- Set of algorithms to produce efficient network topologies
What is the KCC?
What is the KCC?
What is the KCC?
What is the KCC?
History of the KCC

• Original full-mesh C code
• Attempt at MS-ADTS algorithms in C
• Dave Craft (2011) on Python intra-site algorithms
• Late 2014—Early 2015 Douglas and myself
• Samba 4.3 introduced, Samba 4.5 set as default
Stages of the algorithm

- Intra-site algorithm
- Inter-site algorithm
- Removing unneeded connections
- Translate connections

Although the KCC creates ‘connection’ objects, they may not represent the underlying replication. They are only the implied connections given the current network topology.
Pre-requisites

• Transport – IP

dn: CN=IP,CN=Inter-Site Transports,CN=Sites,CN=Configuration,DC=example,DC=com
objectClass: interSiteTransport

• Sites – Default-First-Site

dn: CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=example,DC=com
objectClass: site

dn: CN=NTDS Site Settings,CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=example,DC=com
objectClass: nTDSSiteSettings
interSiteTopologyGenerator: CN=NTDS Settings,CN=DC,CN=Servers,CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=example,DC=com
Pre-requisites

• Site-Links – DEFAULTIPSITELINK

 dn: CN=DEFAULTIPSITELINK,CN=IP,CN=Inter-Site Transports,CN=Sites,CN=Configuration,DC=example,DC=com
 objectClass: siteLink
 cost: 100
 siteList: CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=example,DC=com

Site-links define the allowable connections between sites
Site-links represent (hub-like) physical connectivity
Site-links needs to collectively span your entire network
Pre-requisites - Scenarios

Default-First-Site

Site-1

Site-2

Site-3

DEFAULTIPSITELINK

SITELINKA

SITELINKB
Intra-site algorithm

• Runs on every DC
• Creates connections within a single site
• With just a single server, no work is necessary
• Ring topology, with a few extra connections ($n > 7$)
Intra-site algorithm

- Ring topology, with a few extra connections
Intra-site algorithm

- Every DC in the site has a sorted list of site DCs
Intra-site algorithm

- Compared to the old KCC, there are fewer connections
- The algorithm is quite reliable, adding additional connections
- Information propagates in a more controlled manner

In a single-site use-case, with not that many DCs, behaviour should be quite similar to the old code.
Inter-site algorithm

• Each site elects an inter-site topology generator (ISTG)
• Re-election attempts to occur if the ISTG is not responding
• Attribute: interSiteTopologyFailover
Inter-site algorithm

- Stable answer across entire DC network
- One DC per site managing inter-site connections
- Needs to be as fault tolerant as possible
- Must produce topology optimizing cost and schedules
Inter-site algorithm

Site A

Site B

Site C

Site D
Bridgehead servers are the end-point connections between sites.
Being a bridgehead does not imply being an ISTG.
Inter-site algorithm

There is only pull replication.
Bi-directional replication must be done with two distinct connections.
Inter-site algorithm

There is not necessarily a single bridgehead server.
The inter-site algorithm only runs on the ISTG.
Assume the ISTG in Site D is running for the first time.
A new connection will be created in the database pointing to a randomly chosen bridgehead in Site A. Intra-site replication will propagate this to the necessary bridgehead in Site D.
The incoming bridgehead runs the KCC and notices the new connection (and translates it). It has no idea why it connects to the DC, that’s the role of the ISTG.
Inter-site algorithm
Inter-site algorithm

Site D → Site A → Site B → Site C

Site D

Site A

Site B

Site C
Inter-site algorithm
Add connection to the list of required ones.
Inter-site algorithm
Inter-site algorithm

Total cost: 450
Inter-site algorithm - Failover
Inter-site algorithm - Failover

On network connectivity failure, the KCC attempts to overlay a second redundant topology. For small networks with multiple sites, you may favour the robustness of the old KCC.
Remove unneeded connections

Removes connections:

• which are duplicated (removing the oldest)
• which exceed redundancy limit (intra-site)

Area still needs some work, however, removing too aggressively may cause connectivity issues.
Translate connections

• Of the connections the KCC deems necessary, they are translated into repsFrom (non-replicated attributes)
Two independent tasks running

- KCC running periodically
 - Creating NTDS Connection objects (ISTG or intra-site)
 - Translating NTDS Connections to repsFrom

- DREPL server
 - Reading repsFrom and pulling from the target
 - Reading repsTo and telling target to pull

This means it can take some time to propagate, particularly repsTo which are deferred created by replication on repsFrom.
Translate connections

• Of the connections the KCC deems necessary, they are translated into repsFrom (non-replicated attributes)

• repsFrom flags are set (particularly important for RODC)

• Stale repsFrom SHOULD be deleted

• Stale repsTo SHOULD be deleted
The end result

- Single path from any site to any site (property of a tree)
- Changes should not bounce around significantly
- Significantly reduced replication traffic
- Ability to customize who should talk to who

- Small networks \((n \leq 4) \) should have no visible effect
- Larger networks with varying connectivity shows huge effect
Challenges

•Verbose documentation

•Site-Link: ‘Multi-edge’, hyper-edge?

•White, red, black vertices?
More challenges

• Logical inconsistencies, ambiguities and omissions

• Pseudo-code vs textual description

• Easy to debug your own bugs
 • Testing?
 • --dot-file-dir
 • --readonly --exportldif, --importldif
Incomplete features

- Trusted domains and global catalog replication
- RODC self-management
- Site-Link-Bridge Topologies
- Respecting schedules and other AD attributes
 - Preferred bridgehead servers
 - Replication frequency?
Incomplete features

- Failed connection and failed DC failover
- Better stale connection clean-up
 - MS-DS-Replicates-NC-Reason
 - Use normal replication to propagate failure info
- Better debugging and failure information
- Better defaults for modern networks
Alternative topology strategies

• What is the best topology for various networks?

• Ring algorithm from intra-site for inter-site

• Minimum cost spanning tree plus additional connections

• Fully connected bridge-head servers
Questions?

Email: garming@catalyst.net.nz