
Stretching WSP
With some elastic….

Noel Power
SUSE/Samba team
noel.power@suse.com

2

Agenda

● WSP recap
– What is WSP

– Introduction to the protocol

– The WSP server, client & tools

3

Agenda

● ElasticSearch
– What is it

– Some investigation into using elasticsearch

● what I tried

● what I found out

– What’s promising

– What’s not promising

44

WSP recap

5

History

● Started playing with implementing Windows Search protocol as a
hackweek project at Suse. This was when I first started working on
samba and my intention was to use the experience to get to grips
with some of the internals of the samba code e.g. talloc, tevent etc.

● Additionally I wanted to get familiar with SMB so I randomly picked
a protocol specification that seemed interesting to see if I could
implement ‘something’. Thus my interest in implementing WSP was
born.

– Note: This is still a hobby project for me, to be honest I spend very little time on it. Mostly lots of time
passes before I attempt to return to it but inevitably I end up dealing with the fallout from trying to get it
to run again on master.

6

Windows Search

● What is Windows Search
– Basically Windows Search is a desktop platform that indexes common content and allows users to

find, manage and organize that data.

– Windows search protocol is the mechanism that allows client to perform search queries against a
remote server hosting the Windows Search Service.

– Windows users will be familiar with the ability to search for example different types of files from the
search UI.

7

Windows Search UI

8

WSP protocol

● Allows a client to issue queries to a server hosting the Windows
Search Service

● Protocol is primarily intended to be used for full-text queries

● Sits on top of the SMB pipe protocol

● Heart of the protocol is the query request which includes
– Rowset properties like the catalog name and configuration information

– Restrictions to specify which document are to be included and/or excluded from the search results

– Order in which the search results are returned

9

WSP protocol

● After the query is initiated the client typically requests status
information about the query (is it complete?, how many results
etc.)

● Then client specifies the columns to be returned for the query

● The client can then request results (columns) to be returned

● Results that are too big can be requested later (we don’t support
that) More about this later

● Protocol is mostly simple request/response.

1010

The implementation

11

WSP implementation

● Not upstream yet

● Consists of
– Server (part of smbd)

– Client (wspsearch)

– Translator (wsp-to-sparql)

12

WSP Server

WSP Implementation

Client SMBD

Other Indexer?

Elasticsearch

A
bstract Interface

Tracker

Tracker

13

WSP Server implementation

● Currently supports gnome tracker

● Uses tevent glib integration to communicate with tracker using
native glib api(s)

● Supports basic queries you would get expect from the windows file
explorer search UI e.g.

– Supported ‘Kind’(s) are Contact, Document, Email, Feed, Folder, Music, Picture, Program

– Not Supported are Calendar, Communication, Game, InstantMessage, Journal, Link, Note, Movie,
RecordedTV, SearchFolder, Task, WebHistory

14

WSP to Tracker query conversion

● A WSP query is consists of a command tree of restrictions and sort
orders that specify which documents are to be included (or
excluded) from the search results.

● While WSP defines many restriction types that can be used in the
command tree we are only able to convert a small subset.

– Luckily it seems that this is enough to satisfy the basic queries from the windows explorer search ui

● The binary Query message is converted into tracker sparql (sparql
is the query language that tracker uses)

15

Conversion to Tracker sparql

● We start with a template
– Select nie:url(?u) $columns WHERE {?u nie:url ?url FILTER($restrictions)} ORDER BY $sort)

● $columns, $restrictions & optionally $sort are generated from the
information in the query message

– Any restriction in the binary query command tree that cannot be converted is ignored

16

WSP Client

● There is a simple cli search client called wspsearch

● It support two modes
– Simple

● Which can search for the supported ‘kind’(s) (e.g. Picture, Document etc.) in addition to an optional
‘phrase’ which is used as in a full-text-search which just returns the url of matching documents

– Complex

● Which can accept an AQS-like (advanced query syntax) query. This allows dynamic and expressive
queries to be built (great for testing the server/protocol and useful for actual searches too!

17

WSP Client
Simple Search

18

WSP Client
Complex search

19

Translator

20

Translator
wsp-to-sparql translate binary query

2121

Elasticsearch

22

Elasticsearch

● Recently Spotlight got support for an elasticsearch backend

● Thanks to another hackweek at SUSE I decided to use the time to
have a look into elasticsearch as a potential backend for WSP

● Seems recently there had been a bit of interest again in WSP and
this seemed a good opportunity to refresh my own knowledge of
what needs to be done with WSP, (re)evaluate where we are with
the implementation.

23

Elasticsearch

● Elasticsearch is a search engine based on the Lucene library. It
provides a distributed, multitenant-capable full-text search engine
with an HTTP web interface and schema-free JSON documents.
Elasticsearch is developed in Java. Elasticsearch is the most
popular enterprise search engine – (source Wikipedia)

● Elasticsearch is fast, distributed, can be self hosted or cloud
based, can be clustered etc. etc.

● It’s easy to communicate with, as mentioned above, http/json

● Rich restful API (that maybe can fill more gaps of the more exotic
restrictions)

24

Elasticsearch Investigation

● Poked around the spotlight code
– Unfortunately I don’t have any ios devices so I couldn’t really run much except some test code but I at

least could see lots of snippets of code I could possibly use.

● Visited https://www.elastic.co/
– In particular

● Intro

– https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html

● Full Query DSL (Domain Specific Language)

– https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html

● Downloaded the elasticsearch rpm
– https://www.elastic.co/guide/en/elasticsearch/reference/current/rpm.html

https://www.elastic.co/
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/rpm.html

25

Elasticsearch investigation

● While the elasticsearch documentation shows examples of
populating and querying an index, these examples aren’t very
useful for experimenting with something that is supposed to
represent an index of say a filesystem.

● To that end you can use fscrawler which will
– Index local file system (or a mounted drive) crawling and index new files, update existing ones and

removes old ones

● https://fscrawler.readthedocs.io/en/latest/

● https://fscrawler.readthedocs.io/en/latest/user/getting_started.html

https://fscrawler.readthedocs.io/en/latest/
https://fscrawler.readthedocs.io/en/latest/user/getting_started.html

26

Elasticsearch simple query conversion

● It’s easy to test queries against elasticsearch on the command line
just using curl so as a first step I modified the existing translator
tool wsp-to-sparql to accept a query string in addition to a binary
message.

● Secondly I modified wsp-to-sparql to take an extra parameter to
specify the backend in order specify the ‘flavour’ of query
statement to translate. E.g be able to translate to elasticsearch
Query DSL (specifically a ‘query_string’ query) or translate to
tracker/sparql

27

Elastic query translate

28

Elastic query translate

29

Elasticsearch Query

{
 "from": "$from",
 "size": "$size",
 "_source": [$cols],
 "query": {
 "query_string": {
 "query": "$restrictions"
 }
 }
}

Full Query Template

$from Index at which to
returns row resuls
from

$size Number of rows to
return

$cols List of properties (or
column values) to
return

$restictions Query string
generated from binary
command tree

30

Elasticsearch what I tried

● Started with duplicated abstract implementation for tracker

● Elastic query conversion code is shared with translator tool (the
unfortunately named wsp-to-sparql)

● Modified the duplicated tracker code to communicate with
elasticsearch overt http/json (thanks to pilfering similar spotlight
code)

● Got very basic support for simple queries to work

31

Elasticsearch impressions

● Elasticsearch is pretty simple (especially compared to tracker) to
integrate with

– Communication is simple (http|https) & json

● The Restful API and query support seems much richer and more
suitable than tracker

– Most likely someone with more elasticsearch/Full text search knowledge could really improve the
conversions here

● Processing the results seems a little slower than tracker (most
likely due to all the string processing required)

32

Elasticsearch impressions

● You have to be careful, although it seems although with
elasticsearch http pipelining is supported, that wasn’t my
experience.

– Multiple client messages sent without waiting for reply sometimes responded with out of order
responses (which led to weird hard to reproduce problems)

● The WSP communication model however fits having multiple
connections where within each connection the message order is
effectively serialized so this is not going to be a problem.

33

Implications for Elasticsearch implementation

● I suppose not surprisingly the implementation of the abstract
interface for elasticsearch is mostly very very similar (but not the
same) as the implementation code for tracker. Mostly to do with

– persisting state between calls

– tracking queries (and associated data)

– Converting requested result columns (where possible) into either appropriate retrievable properties for
the indexed document or use a suitable property to ‘synthesize’ the required column value

– Converting values of properties used in WSP query into appropriate values for use in elastic query

● For example paths in WSP typically are of the form ‘file://netbios_name/share_path/…/something.ext’

● Such paths need to be converted when incoming as part of the query conversion and additionally a
‘normal’ file path will need to be converted when returning the value to the WSP client.

smb://netbios_name/share_path/

34

Implications for Elasticsearch implementation

● rework needed
– avoid code duplication

– Possibly provide a reusable internal api for elasticsearch & tracker and possibly other indexers

– add support to be able to configure wsp to use any of the supported indexers

● Multi-index support
– It is not unusual different types of data to be stored in separate elasticsearch indices. FSCrawler for

example by default stores folders in one index and files in another, this setup is of course
configurable. A ‘Folder’ is one of the ‘kind’(s) the windows UI already supports searching for, it is not
possible to query for a ‘Folder’ as there is no distinguishing property to disambiguate a folder from a
file in the index. The only possibility is specifically searching the ‘folder’ index.

35

Implications for Elasticsearch implementation

● Properties
– Given the schema-free nature of elasticsearch unlike tracker/sparql we have no idea what properties

might be used with a given implementation using elasticsearch. This aspect (and the associated
conversions etc.) probably will need to be somewhat configurable and/or pluggable

36

Elasticsearch – does it help

● WSP implementation
– Mapping of restriction types ?

● Seems like there are more similar concepts to WSP than tracker in the api (haven’t explored in detail)

– Mapping to & from WSP properties ?

● Not much if any difference (however lots of flexibility if you wish to customize say what fscrawler
populates elastic with)

– Cursor navigation (e.g. paging through results) ?

● Large improvement, no need to cache results

– Nested queries (e.g. queries based on previous open queries) ?

● No difference

37

Elasticsearch – does it help

● WSP Implementation
– EntryId mapping ?

● If anything this seems a little more difficult than tracker, elasticsearch stores documents with ‘_id’ a
unique identifier but it is not possible to use this ‘_id’ when using ‘query_string’ as with the template used
currently for elasticsearch.

– A number of other ids such as chapters, bookmarks

● Not sure

– Grouping or results, aggregations etc. ?

● The api caters for grouping and aggregations but not sure how well elasticsearch maps to WSP with
this, like EntyId mapping this might have implications for the query template and make the query
generation more complicated

– Scalability

● Much better than tracker and no need to cache results like we need to do with tracker/sparql

3838

Demo

39

Conclusions

● Elasticsearch is a promising alternative indexer to tracker

● It’s worth implementing a new backend for elasticsearch

● Help would be great (both for elasticsearch & tracker) especially in
the area of query translation

● Current WIP repo
– https://git.samba.org/?p=npower/samba.git;a=shortlog;h=refs/heads/npower_WIP_WSP

– https://git.samba.org/?p=npower/samba.git;a=shortlog;h=refs/heads/npower_WIP_WSP_elastic_conv

– https://git.samba.org/?p=npower/samba.git;a=shortlog;h=refs/heads/sambaxp2020-awful-democode

https://git.samba.org/?p=npower/samba.git;a=shortlog;h=refs/heads/npower_WIP_WSP
https://git.samba.org/?p=npower/samba.git;a=shortlog;h=refs/heads/npower_WIP_WSP_elastic_conv
https://git.samba.org/?p=npower/samba.git;a=shortlog;h=refs/heads/sambaxp2020-awful-democode

	Slide 1
	Slide 2
	Slide 3
	Section Title (28pt)_clipboard0
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

