Report from the field: Samba clustering with GlusterFS

sambaXP 2020

Anoop C S <anoopcs@redhat.com> Günther Deschner <gd@samba.org>

Agenda

Overview

- Samba and GlusterFS
- Red Hat Gluster Storage

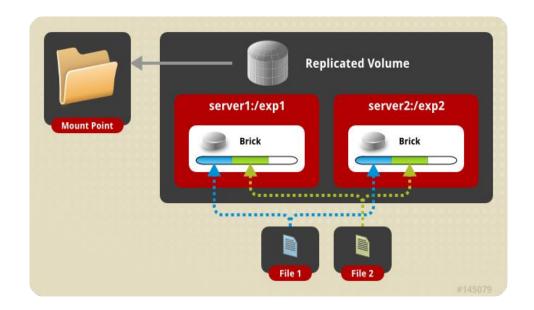
Deployment report

- Clustering issues
- Correctness problems
- Performance limitations

Moving forward

- Improvements in queue
- Future goals and SMB3

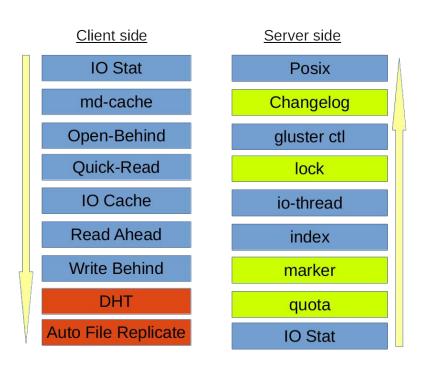
Samba, GlusterFS and Red Hat Gluster Storage (RHGS)



Gluster

- Gluster is a free and open source software scalable network filesystem
- On-premise, public and private cloud deployments
- Replication, Quota, Snapshots, geo-replication
- Runs on every FS that support extended attributes
- FUSE fs client
- Ansible automation
- Supports variety of access protocols including NFS and SMB

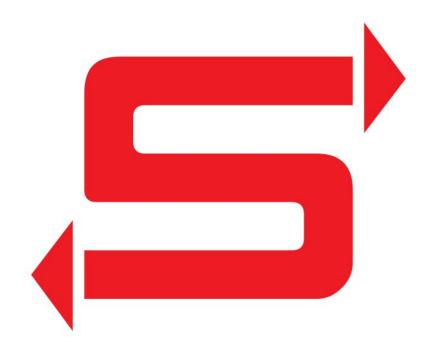
Gluster architecture I


- Bricks are low level components
- Multiple bricks → volumes
- Various different volume types:
 - Distribute
 - Replicate
 - Arbiter
 - Disperse
- volfile configuration

Gluster architecture II

Translator type
Performance

Feature



- Client and server translator stack (similar to the Samba VFS layer)
- md-cache translator primarily important for Samba
- Performance enhancements specific for Samba:

```
gluster volume set <volume>
performance.cache-samba-metadata on
```

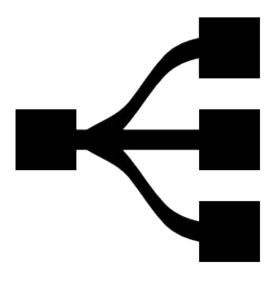

Samba & CTDB

- Layered product:
 Samba version *always* ahead of RHEL Samba version
- Two options for using gluster:
 - vfs_glusterfs module, consuming gfapi (default)
 - Fuse re-export
- macOS clients using vfs_fruit
 (now fully supported with non-local FS as well)
- CTDB for HA of Samba/Winbind and public IPs
- CTDB uses distinct glusterfs volume for recovery lockfile

Common problems from customer setups

Failure to acquire recovery lock for CTDB

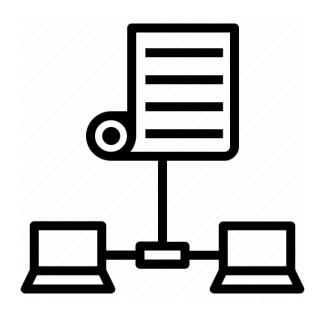
Chances of occurrence: frequent



- Node reboot
- Unavailability of common recovery lock
 - Accidental creation of recovery lock file locally
- Availability of shared storage post-reboot
- Automatic mounting of shared volume holding recovery lock(/etc/fstab)
 - Dependency on glusterd(GlusterFS daemon)
- CTDB systemd service file modifications

Misconfigured public/private network separation

Chances of occurrence: rare



- Cable unplugged and node down/reboot scenarios
- Durable handle reconnect
- Separate GlusterFS and CTDB traffic
 - Network teaming?
- Resolving hostnames, if used, to correct network interface
- External client facing IP on a different network

Diverging netbios namespaces on cluster nodes

Chances of occurrence: rare

- AD Domain membership:
 machine account credentials in CTDB
 - Only join AD on one node!
 - Not having same "netbios name" set splits common cluster account into individual node accounts
- Standalone setup:

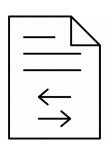
local SAM is shared via CTDB

- Not having same workgroup and netbios name on all nodes creates diverging SIDs
- Result: ACL authorization failures

Incorrect usage of POSIX permissions

Chances of occurrence: common

- Setting up ACLs on share root
 - Enabling -o acl mount option of GlusterFS FUSE mount
- Existence of default ACLs on directory
- Using vfs_acl_xattr
- Special treatment with 'ignore system acls = yes'
- Problems with switching same share with and without
 vfs_acl_xattr

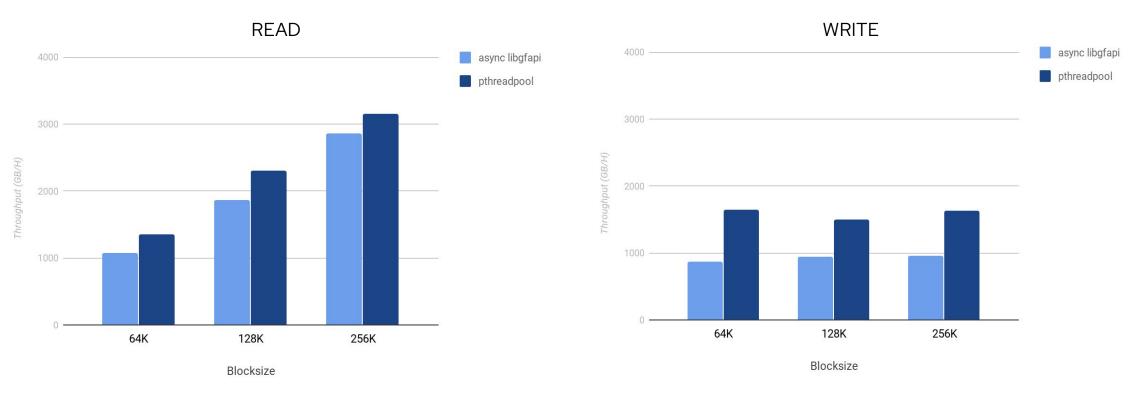

Understanding performance bottlenecks

Primary focus areas

Broadly classified into IO and metadata related workloads

- Basically involves read/write operations
- Writes should reach bricks if online
- Previous implementation with libgfapi async APIs
- Limitations
- Using pthreadpool infrastructure

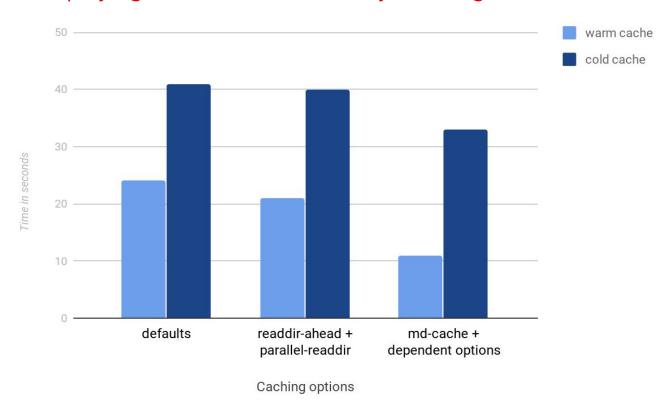
Takeaway: Parallelism and asynchronous nature in scheduling read/write operations


- Mostly getxattr and stat calls
- Frequent invocations
- Working with a distributed file system underneath
- Improvements with get_real_filename and md-cache translator

Takeaway: GlusterFS client side caching for metadata heavy requests

IO benchmarking with Disk Performance tool

Throughput measured for read-write operations



Samba on top of 12x(2+1) Arbiter volume spread across 3 nodes with CTDB Block count = 16K, Thread count = 12, Mode = random

Plain listing of large directories

Delay in displaying contents of a directory with large number of small files

Samba on top of 12x(2+1) Arbiter volume spread across 4 nodes with CTDB Client = *smbclient*, Number of 1KB files = 16K

Recursive listing of large directory tree

Time taken for file system crawl

- Relatively large directory structure
 - with depth level of 10, 100 etc..
- Proposed solution from GlusterFS
 - · implemented within distribution layer
 - · prefetching logic to fill readdir buffer
 - · performance.readdir-cache volume set option
- Native client improvements around 100%
- Samba integration?
 - · yet to explore :-) but hopeful

Miscellaneous improvements

New glusterfs_fuse VFS module

Added advantage of get_real_filename

- Motivation: absence of get_real_filename previously
- Performance improvement with creation of files
 - Exposed in gluster via xattr: glusterfs.get_real_filename:<filename>
- Problems with file_id calculation
 - Difference in Device-Id on FUSE mounts from cluster nodes
- Reuse of existing logic (vfs_fileid)
- New module
 - · Last one in the stack, No additional options
 - Easy to use without any overhead
- Still involves FUSE context switches.

New VFS interface for *fcntl()*

Directed towards handling of open file descriptor flags

- Motivation: actually a regression seen with GlusterFS
 - O_NONBLOCK set bypassing VFS
- Contact VFS for handling fd flags
- Introduction of SMB_VFS_FCNTL
 - Complexity involved with different types of *fcntl* flags
 - Automatic detection of flags
 - May be the only VFS interface macro with variable arguments!
- Just one caller?
- Consumed by vfs_glusterfs with a hack

Ongoing developments around Samba integration

Next steps

General upcoming developments

- Correctness in durable handle reconnect with GlusterFS
- Slow directory listing (large number of entries)
- Proxy mode with vfs_glusterfs/gfapi to limit memory consumption
- SMB3 Multichannel
 - Oplock/lease replay
 - Enabling socket_wrapper for multichannel self test
 - Integration with CTDB
- Witness
 - Dependency on async DCE/RPC server
 - Prototype implementation done in 2015
- Automation/Cl

Questions?

- in linkedin.com/company/red-hat
- youtube.com/user/RedHatVideos
- facebook.com/redhatinc
- twitter.com/RedHat

