A Talk about MS-SFU Kerberos Extensions:

Protocol Transition (S4U2Self) & Constrained Delegation (S4U2Proxy).

Isaac Boukris

SambaXP 2019

Agenda

- Why S4U2Self is important for Samba.
- How does it work in local and cross realm.
- Recent CVEs related to S4U2Self.
- A couple of words on S4U2Proxy and RBCD.

What is S4U2Self and why you should care

- Any server providing resources needs to have a mean to authenticate the user and to get a the list of groups the user is member of for authorization.
- Usually user's password is required to get user's token (Kerberos or NTLM).
- Any other authentication schemes (TLS, OTP, name it) can't get us a token.
- LDAP is the problem not the solution.
- The consensus on Samba ML is that the best solution is S4U2Self.
 - Supports enterprise-names and and X509 certificates.
 - We can and should implement S4U2Self within winbind!

How does it work

- PA-FOR-USER.
- PA-S4U-X509-USER only implemented in MIT.
- Cross Realm S4U2Self only implemented in MIT.
- TODOs:
 - Porting S4U code from MIT to Heimdal.
 - Add test coverage to Samba MIT build.

MS-SFU 2.2.1 PA-FOR-USER:

The PA-FOR-USER padata value is protected with the help of a *keyed* checksum, as defined below...

```
✓ tgs-req

     pvno: 5
     msg-type: krb-tgs-req (12)
  padata: 4 items
     > PA-DATA PA-TGS-REQ
     > PA-DATA Unknown: 222

✓ PA-DATA PA-FOR-USER

✓ padata-type: kRB5-PADATA-FOR-USER (129)
           padata-value: 3049a0153013a00302010aa10c300a1b086973616163406e...
              name
                   name-type: kRB5-NT-ENTERPRISE-PRINCIPAL (10)

∨ name-string: 1 item

                      KerberosString: isaac@nd
                realm: ND C
             v cksum
                   cksumtype: cKSUMTYPE-HMAC-MD5 (-138)
                   checksum: 34ac408820c75ae7dfa2f072614107he
                auth: Kerberos
     > PA-DATA PA-S4U-X509-USER

✓ req-body

        Padding: 0
     > kdc-options: 40810000 (forwardable, renewable, canonicalize)
        realm: ND.C
     > sname
        till: 2018-12-04 09:32:32 (UTC)
        nonce: 1281739092
     > etype: 1 item
```

CVEs related to S4U2Self

 Samba CVE-2018-16853: A user in a Samba AD domain can crash the MIT KDC by requesting an S4U2Self ticket.

https://github.com/samba-team/samba/commit/6ab51b2af90f5dca11b8587b2a16215ab4497069

https://github.com/samba-team/samba/commit/6c453aeb0c771d14fe501e9a37d9f51b9403872b

 MIT Kerberos CVE-2018-20217: Reachable Assertion. If an attacker can obtain a krbtgt ticket using an older encryption type (single-DES, triple-DES, or RC4), the attacker can crash the KDC by making an S4U2Self request.

https://github.com/krb5/krb5/commit/94e5eda5bb94d1d44733a49c3d9b6d1e42c74def

Samba CVE-2018-16860 / Microsoft CVE-2019-0734: S4U2Self with unkeyed checksums.

https://github.com/samba-team/samba/commit/43958af1d50f0185e21e6cd74110c455ee8996af

A python tool for intercepting and manipulating Kerberos packets, can be used to test KDC handling of unkeyed S4U2Self requests:

https://github.com/iboukris/S4U/blob/master/kintercept/kintercept.py