

Speeding up Samba
by backing up

Experiences in implementing and
optimizing Active Directory features
in Samba

What has been done in the last year?

Samba 4.9

● Password and membership change auditing

● LMDB back-end (semi-experimental)

● Fine grained password policies

● Domain backup, restore and rename tools

● Better DRS partner visualization

● Automatic DNS site coverage

● DNS scavenging support

● Improved trust support and more...

Samba 4.10

● GPO import and export

● KDC and NETLOGON prefork (default in 4.11)

● (Prefork) improvements for restarting services automatically

● Changes to LDAP paged results to save memory

● Offline domain backup

● Python 3 support

● Audit logging with MS event IDs and more...

A content slide
Join

A content slide
Modify

A content slide
Search

Performance, performance, performance

Replication improvements, linked attribute performance, rename performance, large
scale improvements, ... as well as other things like schema updates

Traffic replay runner

Basic steps for replaying traffic

Network trace

Run wireshark and
get a pcap output Traffic summary

Anonymize the traffic and
pick out important details
to replay

Traffic model
(optional)

Create a statistical
model for generating
proportionally similar
traffic







Basic steps for replaying traffic

Play traffic

Run either the
summary or the
model file

Analyze the results

Successes or failures,
median, mean, max, 95th





Basic steps for replaying traffic

Play traffic

Run either the
summary or the
model file

Analyze the results

Successes or failures,
median, mean, max, 95th





That’s it!

We’re fast, 100,000
users, no problems!

Naive traffic runner results (2 vCPU, 8GB RAM)

v4.6 – 113 operations / second

v4.7 – 94 operations / second (changes to LDAP multi-process)

v4.8 – 154 operations / second (only in new prefork process mode)

v4.9 – 157 operations / second (only in prefork mode)

v4.10 – Same as 4.8 and 4.9

Git master (prefork is default) – possibly 160?

Traffic sample is largely DNS, name resolution, LDAP bind, NETLOGON

So... backing up?

Domain backup

A new method of backing up an AD
Domain in Samba 4.9 + 4.10

Why?

● Existing samba_backup script had a number of problems

● With a running DC it wasn’t certain to produce a valid copy

● It was safer than a standard copy, but didn’t respect lock ordering

● Might have caused deadlocks, corrupt or inconsistent (secrets) data

● Single source of truth of the domain data (multi-master replication)

● Forcing a pristine backup to override corrupt data elsewhere is non-trivial

● Restoring into competing data, might look replicated due to old versioning

● Avoid some database inconsistencies by creating a replication (online) backup

Offline and online

https://wiki.samba.org/index.php/Back_up_and_Restoring_a_Samba_AD_DC

DC DC

DC

Offline

Online

DC
RPC/
DRSUAPI

Database copy

samba-tool domain backup restoresamba-tool domain backup [online|offline]

Network

Tar file

Seed

DC

Re-join DC

EXAMPLE.COM
EXAMPLE.COM

Issues to resolve?

● The tool doesn’t exactly replace samba_backup (despite being removed)

● samba-tool domain backup can’t restore to the same DC name

● samba-tool domain backup can’t restore to the same install location

● Copying of sysvol still seems buggy from the mailing list

● For those who re-deploy in a certain way, it’s the (almost) ideal tool

● For those who know to re-join or re-sync (often not perfectly but perhaps in cases where it isn’t
that critical) it’s a new hassle

● Backup of a domain, or backup of a domain controller?

Domain rename

Create testing environments and lab
domains (without passwords and secrets)

Rename

DC DC

DC
Online

DC
RPC/
DRSUAPI

Network

Seed

DC

Re-join DC

RENAMED.COM
EXAMPLE.COM

samba-tool domain backup restoresamba-tool domain backup rename Tar file

Rewrites to renamed.com

Must supply new domain details in backup!

https://wiki.samba.org/index.php/Create_a_samba_lab-domain

Benefits and Caveats

● Much less worries about production and pre-production interacting

● Firewalling should be more straightforward

● Experimenting with load and load testing different hardware

● No explicit secrets (or close to it) isn’t anonymized or secret-free

● The data in the domain means it can still serve the old DNS records

● Rebuilding the sites and subnets is still a job on its own (automation?)

● Use in production is debateable...

Benefits and Caveats (custom DC testenv)

BACKUP_FILE=backup-offline.tar.bz2 SELFTEST_TESTENV=customdc make testenv

● Reproducible testing is easier, upgrade testing is easier

● Testing under different conditions is much easier

● Having a clean DC before every test is possible

Linux Namespaces

Running under socket_wrapper (default test-bed for samba testing), we find a 10-20%
performance hit when using LMDB.

● Why not leave the network faking to the kernel?

● Why not fake our hostnames and override DNS resolution using the kernel?

Completely isolated test-bed using ‘real’ network interfaces that can still be made to
interact with the real system and virtual machines. Unfortunately still problems with
UID fakery (apparently Docker is hard), but it works.

GPO import/export

A new way of copying over a SYSVOL
that functions (ish) across domains

Exports to XML with XML entities
Ideal with domain rename (pre-prod)

MS-GPOD

MS-GPOL

MS-GPOD

fdeploy1.ini

audit.csv

GptTmpl.inf

MS-GPOL

fdeploy1.ini

audit.csv

GptTmpl.inf

registry.pol

.aas

.xml

MS-GPOD

MS-GPOL

fdeploy1.ini

audit.csv

GptTmpl.inf

registry.pol

.aas

.xml

Machine/Microsoft/Windows NT/SecEdit

User/Documents & Settings

MS-GPOL

MS-GPOD

fdeploy1.ini

audit.csv

GptTmpl.inf

registry.pol

.aas

.xml

Machine/Microsoft/Windows NT/SecEdit

User/Documents & Settings

MS-GPIPSEC

MS-GPDPC

MS-GPPREF

MS-GPWL

MS-GPSI

MS-GPAC

MS-GPSB

MS-GPFR

MS-GPSCR

MS-GPREG

MG-GPFAS

MS-GPREF

MS-GPNRPT

MS-GPOL

MS-GPOD

Using GPO Import/Export

samba-tool gpo backup
samba-tool gpo restore

samba-tool gpo backup --generalize --entities=$OUT_PATH
samba-tool gpo restore --entities=$IN_PATH

https://wiki.samba.org/index.php/GPO_Backup_and_Restore

<!ENTITY SAMBA____USER_ID_____7b7bc2512ee1fedcd76bdc68926d4f7b__ "Guest">

Automation

Actually running the traffic runner
for real (making it reproducible
and periodic)

Automation

● Virtual machines → cloud (sometimes too slow)

● Openstack HEAT templates, Bash scripts

● Ansible playbooks

Still has its problems, but we now have a mostly re-usable and composable set of
playbooks (modules) for different AD environments using YAML files.

This work has led to upstream automation work, bootstrap code to simplify package
installations across different platforms (more natural fit in the source tree).

Automation

DC DC

DC

Automation

DC DC

DC

DC RODC

DC

Automation

DC DC

DC

DC RODC

DC

MACH
Seed AD domain from a backup

Automation

● GUI → YAML

● Backed by Docker or Vagrant instead of Openstack

● How do we integrate the self-test system?

● Can we use this infrastructure to run against Windows regularly?

Useful for development, probably overkill (or not a great fit) for production:
https://gitlab.com/catalyst-samba

 ansible-role-samba-dc

 ansible-role-samba-common

https://gitlab.com/catalyst-samba

Replicating... forever

After joining a new domain controller to a restored domain,
ongoing replication would never end.

Why doesn’t it only take as long as the join (30 minutes)?

CPU Flame graphs
(Linux perf)

Callgrind

Print debugging

top (htop/iotop)

gdb (attach to pid)

trial and error

perf top

basic arithmetic

luck

Lessons

● It turns out there was a bug in the backup code, but it found real performance
issues that we then fixed

● Replication seems to retrigger despite having just joined (still)

● Accidentally doing the wrong thing means running out of memory quickly with a
large database.

● Piecemeal growth ≠ dealing with everything at once

● LMDB behaves completely differently (copy-on-write)

Re-indexing

Example of an operation where our
tooling failed and SIZE MATTERS

Re-indexing timings (mm:ss.ss)

100,000 users approx 230,000 records.
 Hash size re-index time
 1,000 14:42.06
 10,000 1:59.56
 100,000 39.92
 200,000 37.48
 300,000 43.16

50,000 users approx 110,000 records.
 Hash size re-index time
 1,000 3:46:93
 10,000 37:29
 100,000 18.95

20x improvement

Basically a one line

change

Traffic runner on a 50k user DC (with many links)

v4.9 – Targeting 80 operations / second (actual 32 success ops / second)

Protocol Op Code Description Count Failed Mean Median 95% Range Max

ldap 0 bindRequest 863 23 4.528840 0.563014 15.961734 203.778658 203.910120

ldap 0 bindRequest 3450 0 0.505355 0.143523 2.496425 9.502704 9.546165

Master – Targeting 80 operations / second (no failures + 2x throughput)

Traffic runner on a 50k user DC (with many links)

v4.9 – Targeting 80 operations / second (actual 32 success ops / second)

Protocol Op Code Description Count Failed Mean Median 95% Range Max

rpc_netlogon 39 SamLogonEx 1212 7 1.083997 0.458507 1.335286 60.024080 60.062607

rpc_netlogon 39 SamLogonEx 1568 0 0.082939 0.017412 0.091722 13.487989 13.493821

Master – Targeting 80 operations / second (no failures + 2x throughput)

Some operations we emulate are silly in the large database case (or latency requirements).

Should try to improve 95% numbers, but this is a fairly worst case scenario with large groups.

Master – Targeting 80 operations / second (no failures + 2x throughput)

Working with a (more realistic) 100k user DC

1) Doesn’t page the database into memory correctly, LDAP allocates 3x
the database in memory (SSD recommended)

2) Loading into caches from memory can be extremely costly
(influencing the database binary storage format for 4.11)

3) LDAP bind doesn’t work pre–4.11 with users in a group of 100,000 users

4) Behaviour of sequential operations is not the same as in parallel

5) DNS???

Final takeaways

1) Real machines matter, fakery doesn’t measure performance
(namespaces, docker, VM, bare-metal, modern hardware)

2) Measuring sequential operation also not helping (new tools?)

3) Repeating traffic runner runs (sys-admins should try it in a lab)

4) Reducing allocations helps in multi-process more than expected
(as well as other memory manipulations)

Thanks
...





garming@catalyst.net.nz

linkedin.com/in/garming-sam

 garming@samba.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

