
smbcmp
a handy network capture diff tool for SMB traffic

Aurélien Aptel <aaptel@suse.com>

SUSE

2

Who am I?

• Aurélien Aptel
• Work in SUSE, Samba Team
• Focus on SMB kernel client aka “cifs.ko”

3

What is this about?

• Different debugging approaches I use
• a new tool: smbcmp

• Mostly useful to developers
• But also for administrators, to diagnose network issues

4

Debugging is hard

• No silver bullet

• Some approach works better than others for certain bugs

• SMB bugs
– In client?

– In server?

– Both?

– Specifications wrong?

– Unspecified?

• Lot of possible failures
– Goal: isolate as much as possible before digging in

5

Different versions: git bisect

• Setup
– Find “good” commit

– Find “bad” commit

• Dichotomy
– Tries to find first bad commit

– Checkouts intermediaries commits you can test

– Search space divided by 2 at each step

– N commits → O(log N) steps to determine first bad commit

– Really powerful: 130k commits in 17 steps

• Can be automated
– Reproduce script

• Indicate if “good” or “bad” via the exit code

– git bisect run myscript.sh

6

Different implementations

• Sometime there are no good commits or its very impractical to find
• Try different combination of servers/clients

• Windows, samba, smbclient, cifs.ko

• Try writing a test client that only does the buggy steps
– Samba torture test framework

– Pike (https://github.com/emc-isilon/pike)
• Clean, pure-python, SMB2/3 lib, with easily tweakable fields

• Used to test SMB3 POSIX extensions (https://github.com/aaptel/pike/commits/smb3unix)

– Microsoft has open-sourced a massive testing framework
• https://github.com/Microsoft/WindowsProtocolTestSuites

https://github.com/emc-isilon/pike
https://github.com/aaptel/pike/commits/smb3unix
https://github.com/Microsoft/WindowsProtocolTestSuites

7

Logs

• Samba
– smb.conf

• Log level = 10

• Smblog-mode for emacs :)

8

Logs

9

Logs

• Samba
– smb.conf

• Log level = 10

• Smblog-mode for emacs :)

• Kernel
• echo 1 > /proc/fs/cifs/cifsFYI
 echo 8 > /proc/sys/kernel/printk
 echo 1 > /sys/module/dns_resolver/parameters/debug
 echo "module cifs +p" > /sys/kernel/debug/dynamic_debug/control
 echo 'file fs/cifs/* +p' > /sys/kernel/debug/dynamic_debug/control

– ftrace / trace-cmd
• Record call graph

• https://jvns.ca/blog/2017/03/19/getting-started-with-ftrace/

https://jvns.ca/blog/2017/03/19/getting-started-with-ftrace/

10

Network capture

• Wire log
• When applicable, network trace analysis is very effective
• Wireshark!

– smb||smb2||dns||krb4

11

Debugger

• Good tool but often impractical
• Breakpoints = timeouts
• Samba

– Forks for user sessions

– set follow-fork-mode child
set detach-on-fork off

• Kernel
– Qemu gdb server

– qemu … -s

– gdb -ex ‘add-auto-load-safe-path /’ \
 -ex ‘target remote :1234’ vmlinux

12

Debugger

• Python helper funcs in kernel.git
• Kernel cannot be compiled without optimization

– Out of order execution

– dreaded <optimized out>

– Inline code

– Since GCC v4.8 '-Og'
“kernel hacking: GCC optimization for better debug experience (-Og)”
• https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1707708.html

https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1707708.html

13

Code reading

• The inevitable code/doc-reading part
– Reading the spec one time to get an idea of how it’s supposed to work at the protocol

layer

– Finding the corresponding codepath

– Reading source code of the relevant functions

– Look for bug, typos, and wrong logic wrt the specs

– Repeat

• Amount of code to grok can be very big
– Long process, easy to miss the bug

14

Network capture comparison

• Get a trace of a working case
• Get a network trace of the issue
• Look hard at both traces

– try to see what the good client/server is doing that the bad one doesn’t (or vice versa)

– Compare packets, fields, etc

15

Comparing network traces

• Open both traces side by side
• Expand the little handles
• Lots of them...

– Nested
• Into

• Each
• other

16

Comparing network traces

• Eventually you switch to a different packet and the click-dance starts again
• Impractical for multiple reasons

– Your index hurts

– You skip expanding some fields because “it’s never going to be different here”
• Until it does…

– Your l33t h4cker eyes might just miss a difference
• whitespace, caps, slash directions, flags..?

– Some differences are false positives
• Timestamps, random GUID, hashes, ...

17

Automating the comparison

• Wireshark is great…
• Would be nice to interact with it programatically
• API?

– Not really :(

– Tshark: text output
• Also json and xml output

– Also a daemon version sharkd
• Undocumented?

18

tshark

tshark -r smb3-aes-128-ccm.pcap -Y smb2

 1 ... 10.160.64.139 → 10.160.65.202 SMB2 172 Negotiate Protocol Request

 2 ... 10.160.65.202 → 10.160.64.139 SMB2 318 Negotiate Protocol Response

 3 ... 10.160.64.139 → 10.160.65.202 SMB2 190 Session Setup Request, NTLMSSP_NEGOTIATE

 4 ... 10.160.65.202 → 10.160.64.139 SMB2 318 Session Setup Response, Error: STATUS_...

 5 ... 10.160.64.139 → 10.160.65.202 SMB2 430 Session Setup Request, NTLMSSP_AUTH, User:
SUSE\administrator

 6 ... 10.160.65.202 → 10.160.64.139 SMB2 142 Session Setup Response

...

19

tshark

tshark -r smb3-aes-128-ccm.pcap -Y smb2 -V

Frame 1: 172 bytes on wire (1376 bits), 172 bytes captured (1376 bits) on interface 0

 Interface id: 0 (unknown)

 Encapsulation type: Ethernet (1)

 Arrival Time: May 17, 2017 12:02:16.523633000 CEST

...

 [Protocols in frame: eth:ethertype:ip:tcp:nbss:smb2]

...

SMB2 (Server Message Block Protocol version 2)

 SMB2 Header

 Server Component: SMB2

 Header Length: 64

 Credit Charge: 0

 Channel Sequence: 0

 Reserved: 0000

 Command: Negotiate Protocol (0)

 Credits requested: 2

 Flags: 0x00000000

 0 = Response: This is a REQUEST

 0. = Async command: This is a SYNC command

20

smbcmp

• First prototype in emacs
– https://github.com/aaptel/elshark

• Moved to Python script using curses
– Calls tshark in the background

• 2 modes
– Single trace

• aka curses-wireshark (summaries + details)

– Diff traces
• Show 2 summaries

• Diffs the detailed output

https://github.com/aaptel/elshark

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

