5

Let’'s Rust in Samba

Trying to use Samba with Rust libraries
Kai Blin
Samba Team

SambaXP 2018
2017-06-06

Intro

-+ M.Sc. in Computational Biology

+ Ph.D. in Microbiology v

- Samba Team member

2/42

Overview

- Rust Intro
-+ The Example Project
+ Challenges

- Conclusions

3/42

If someone claims to have the perfect programming language, he is
either a fool or a salesman or both.
- Bjarne Stroustrup

Rust Intro

Why?

"The [Samba] project does need to consider the use of other, safer languages."
- Jeremy Allison, SambaXP 2016

5/42

Why?

No, honestly, why?

+ Avoid whole classes of bugs
- New languages, new features

- It's getting harder to find C programmers

6/42

Currently

- 80% C, 7% Python (2)
+ ~ 2 million lines of code
+ ~15-20 regular contributors

7142

Rust

+ Announced 2010

+ C-like, compiled language

-+ Focus on memory safety

- Package management with cargo
- Still a bit of a moving target

+ Programmers call themselves "Rustacians"

8/42

Rust
Hello, World!

fn main() {
println! ("Hello, world!");

}

9/42

Introducing the example project.

Plan

-+ Write a DNS parser in Rust
+ Build as a shared library

+ Link with Samba

+ Profit!

11/42

Initial Experiment: Building a Shared Library

Explained in the Rust Book

[lib]
name = "embed"
crate-type = ["dylib"]

12/42

https://doc.rust-lang.org/1.5.0/book/rust-inside-other-languages.html

Second Experiment: Linking with Samba

- Preferred build system for Rust is cargo
+ Preferred build system for Samba is waf
- Fiddly and not very exciting

Idea: Build a small demo first, then figure out how to link

13/42

New Plan

+ Make up a simple DNS-like protocol
+ Build a parser for it in Rust

- Build as a shared library

+ Load from a C application

- Profit!

14/42

The FancyTalk Protocol

© 1 2 3 4 5 6 7 8 9 1011 12 13 14 15
s T S e e s bk bt (T e S S
| ID |
et T S e e e bk st (T R S e S
|QR|BD|IT|UL|BL|Reserved| Red |
s T e e b e Eh et (TE e S e S
| Green | Blue |
et T S e e R aih it (T TREE S R S
| Query ... |
T e e h b ST S S Ar e S e S
|- |
et T e e e et ik st (T TR S S
| Payload ... |
R e T T S S e e S A S ek e s

s st e S S n b e Tr EISE It SR e

15/42

The FancyTalk Protocol

- Client sends a query, giving an ID
- Server looks up the query in the database

- Server responds with a payload, using bit flags for formatting and fancy
colours

16/42

Demo Time!

Server

$ cd server
$ cargo run

Client

$ cd client
$ cargo run 127.0.0.1 65432 greeting

17/42

In theory, there is no difference between theory and practice. But, in
practice, there is.
- Jan L. A. van de Snepscheut

Implementing it

Data structure

pub struct Package {
pub id: ul6,
pub message type: MessageType,
pub bold: bool,
pub italic: bool,
pub underlined: bool,
pub blink: bool,
pub red: u8,
pub green: u8,
pub blue: u8,
pub query: Option<String>,
pub payload: Option<String>,

}

pub enum MessageType {
Query,
Response,

19/42

Client

let mut query = Package::new();
query.query = Some(config.query);

let mut out buf: Vec<u8> = Vec::new();

{

let mut encoder = Encoder::new(&mut out buf);
query.write(&mut encoder).expect("Failed to encode query");

}

// send query
// get response

let mut decoder = Decoder::new(&in buf);
let response = Package::read(&mut decoder).expect("Parsing the response failed");

// Format, colour and print response

20/42

Rust Server

loop {
// Receive query into inbuf

let mut decoder = Decoder::new(inbuf);
let query = Package::read(&mut decoder).expect("Parsing query failed");

let response = lookup message(&mut messages, &query);

let mut outbuf: Vec<u8> = Vec::new();

{

let mut encoder = Encoder::new(&mut outbuf);
response.write(&mut encoder).expect("Encoding response failed");

}

// Send response from outbuf

21/42

The C Server Concept

while True {
// Recieve query into in buffer

// Call into Rust for parsing in buf into Package
query = decode package(in buffer, len);

// "Business logic" in C
lookup message(query, response);

// Call into Rust again to create out buf for Package
encode package(response, &out buffer, &len);

// Send response from out buffer

22/42

The Shared API

typedef struct package {

//. ..
} Package;

Package *decode package(const uint8 t* buffer, size t len);
int encode package(const Package *package, uint8 t **buffer, size t *len);

23/42

Hang on a Moment

Who owns memory for the Package struct in decode package()?

-+ Option 1: Rust
- Option 2: C

24/42

Option 1: Rust Owns Memory

+ Rust handles memory allocation
+ Cjust uses the structs
+ Rust needs to handle deallocation

+ Cneeds to call back into Rust to free memory

25/42

Remember the Free Functions

typedef struct package {

//. ..
} Package;

Package *decode package(const uint8 t* buffer, size t len);

int encode package(const Package *package, uint8 t **buffer, size t *len);
void free package(Package *package);

void free buffer(uint8 t *buffer);

Someone will forget to call the right free soon.

26/42

Demo Time!

Server

$ cd c-server
$ make run

Client

$ cd client
$ cargo run 127.0.0.1 6543 greeting

27142

Option 2: C Owns Memory

- Memory ownership passed to calling C code

+ C takes care of freeing the memory

+ Rust needs to allocate memory in a way C can free
- |dea: Port talloc to Rust

28/42

Detour

Implementing talloc in Rust

29/42

Implementing talloc in Rust

+ Load libtalloc via FFl
+ Provide talloc named const() and talloc free() calls

- Wrap in Rust layer to make this feel like native code.

30/42

talloc FFI

use libc::{size t, c int, c char, c void};

#[link(name="talloc")]
extern {
pub fn talloc named const(context: *const c void, size: size t,
name: *const c char) -> *mut c void;
pub fn talloc free(context: *mut c void,
location: *const c char) -> c int;

Now talloc is useable in Rust
Needs to be wrapped to feel more Rust-like

31/42

talloc Rust Datastructures

- Basic datastructure to allocate heap memory is Box<>
- Build a Box<>-like TallocContext<> that uses talloc
- Use that to allocate memory for transferable data structures

32/42

talloc Rust Datastructures

impl<T> TallocContext<T> {
pub fn new<U>(parent: Option<TallocContext<U>>) -> TallocContext<T> {
let size = size of::<T>();
let name = CString::new("Memory context allocated from Rust.")
.unwrap();

let parent ptr = match parent {
Some(tc) => tc.ptr,
None => null(),

¥
unsafe {
let ptr = ffi::talloc named const(parent ptr as *const c void,
size as size t, name.as ptr());
TallocContext {
ptr: ptr as *mut u8,
phantom: PhantomData
}
}

33/42

talloc Rust Datastructures

impl<T> Drop for TallocContext<T> {
fn drop(&mut self) {
let name = CString::new("Free in the Rust deallocation logic.")
.unwrap();

unsafe {

let retcode = ffi:: talloc free(self.ptr as *mut c void,
name.as ptr());
if retcode = 0 {
panic! ("Failed to free memory!");

}
}s

34/42

There's More

pub struct Package {
pub id: ul6,
pub message type: MessageType,
pub bold: bool,
pub italic: bool,
pub underlined: bool,
pub blink: bool,
pub red: u8,
pub green: u8,
pub blue: u8,
pub query: Option<String>,
pub payload: Option<String>,

35/42

More Types

pub struct TallocString {
inner: TallocContext<[u8]>,

}

pub struct TallocVec<T> {
context: TallocContext<T>,
len: usize,

We probably want talloc versions of all heap-allocated structures >- Lots of
boilerplate

36/42

Alternative Idea

+ Make talloc useable as global allocator in Rust
+ Implement Allocate trait
- But: Not a stable feature yet

37/42

End of Detour

() Implementing talloc in Rust

38/42

Truth is subjectivity.
- Sgren Kierkegaard

Conclusions

Conclusions

- Less easy than | had hoped for

+ Need to decide which memory handling method to use
+ How to integrate build systems?

+ How to handle Rust as dependency?

+ Rust community is pretty helpful

40/42

Future Work

- Better talloc-sys implementation?
+ Auto-generate code from IDL
- Build system integration @

41/42

Thank you

