
Samba KCC: Saying No to Full 
Mesh Replication

Garming Sam
Catalyst IT, Samba Team



What is the KCC?

• Knowledge consistency checker

• Used to manage replication connections in AD

• Set of algorithms to produce efficient network topologies

Site A

Site B

Site C

Site D



What is the KCC?



What is the KCC?



What is the KCC?



What is the KCC?



History of the KCC

• Original full-mesh C code

• Attempt at MS-ADTS algorithms in C

• Dave Craft (2011) on Python intra-site algorithms

• Late 2014—Early 2015 Douglas and myself

• Samba 4.3 introduced, Samba 4.5 set as default



Stages of the algorithm

• Intra-site algorithm

• Inter-site algorithm

• Removing unneeded connections

• Translate connections

Although the KCC creates ‘connection’ objects, they may not 

represent the underlying replication. They are only the implied 

connections given the current network topology.



Pre-requisites

• Transport – IP

dn: CN=IP,CN=Inter-Site Transports,CN=Sites,CN=Configuration,DC=example,DC=com

objectClass: interSiteTransport

• Sites – Default-First-Site

dn: CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=example,DC=com

objectClass: site

dn: CN=NTDS Site Settings,CN=Default-First-Site-

Name,CN=Sites,CN=Configuration,DC=example,DC=com

objectClass: nTDSSiteSettings

interSiteTopologyGenerator: CN=NTDS Settings,CN=DC,CN=Servers,CN=Default-First-Site-

Name,CN=Sites,CN=Configuration,DC=example,DC=com



Pre-requisites

• Site-Links – DEFAULTIPSITELINK

dn: CN=DEFAULTIPSITELINK,CN=IP,CN=Inter-Site 

Transports,CN=Sites,CN=Configuration,DC=example,DC=com

objectClass: siteLink

cost: 100

siteList: CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=example,DC=com

Site-links define the allowable connections between sites

Site-links represent (hub-like) physical connectivity

Site-links needs to collectively span your entire network



Pre-requisites - Scenarios

Default-First-Site

DEFAULTIPSITELINK

Site-2

SITELINKB

Site-3

Site-1SITELINKA



Intra-site algorithm

• Runs on every DC

• Creates connections within a single site

• With just a single server, no work is necessary

• Ring topology, with a few extra connections (n > 7)



Intra-site algorithm

• Ring topology, with a few extra connections



Intra-site algorithm

• Every DC in the site has a sorted list of site DCs



Intra-site algorithm

• Compared to the old KCC, there are fewer connections

• The algorithm is quite reliable, adding additional connections

• Information propagates in a more controlled manner

In a single-site use-case, with not that many DCs, behaviour 

should be quite similar to the old code.



Inter-site algorithm

• Each site elects an inter-site topology generator (ISTG)

• Re-election attempts to occur if the ISTG is not responding

• Attribute: interSiteTopologyFailover

Site A

Site B

Site C

Site D



Inter-site algorithm

• Stable answer across entire DC network

• One DC per site managing inter-site connections

• Needs to be as fault tolerant as possible

• Must produce topology optimizing cost and schedules



Inter-site algorithm

Site A

Site B

Site C

Site D



Inter-site algorithm

Site A

Site B

Site C

Site D

Bridgehead servers are the end-point connections between sites.



Inter-site algorithm

Site A

Site B

Site C

Site D

Being a bridgehead does not imply being an ISTG.



Inter-site algorithm

There is only pull replication. 
Bi-directional replication must be done with two distinct connections.

DC1 DC2

pulls from



Inter-site algorithm

Site A

Site B

Site C

Site D

There is not necessarily a single bridgehead server.



Inter-site algorithm

Site A

Site B

Site C

Site D

The inter-site algorithm only runs on the ISTG.



Inter-site algorithm

Site A

Site B

Site C

Site D

Assume the ISTG in Site D is running for the first time.



Inter-site algorithm

Site A

Site B

Site C

Site D

A new connection will be created in the database pointing to a randomly chosen bridgehead
in Site A. Intra-site replication will propagate this to the necessary bridgehead in Site D.



Inter-site algorithm

Site A

Site B

Site C

Site D

The incoming bridgehead runs the KCC and notices the new connection (and translates it).
It has no idea why it connects to the DC, that’s the role of the ISTG.



Inter-site algorithm

Site A

Site B

Site C

Site D



Inter-site algorithm

Site A

Site B

Site C

Site D



Inter-site algorithm

Site A

Site B

Site C

Site D

100

150

200

500



Inter-site algorithm

Site A

Site B

Site C

Site D

100

150

200

500

Add connection to the list of required ones.



Inter-site algorithm

Site A

Site B

Site C

Site D

100

150

200

500



Inter-site algorithm

Site A

Site B

Site C

Site D

100

150

200

500

Total cost: 450



Inter-site algorithm - Failover

Site A

Site B

Site C

Site D

100

150

200

500



Inter-site algorithm - Failover

Site A

Site B

Site C

Site D

100

150

200

500

On network connectivity failure, the KCC attempts to overlay a second redundant topology.
For small networks with multiple sites, you may favour the robustness of the old KCC.



Remove unneeded connections

Removes connections:

• which are duplicated (removing the oldest)

• which exceed redundancy limit (intra-site)

Area still needs some work, however, removing too aggressively 

may cause connectivity issues.



Translate connections

• Of the connections the KCC deems necessary, they are 

translated into repsFrom (non-replicated attributes)

NTDS-Connection

repsFrom



Two independent tasks running

• KCC running periodically

• Creating NTDS Connection objects (ISTG or intra-site)

• Translating NTDS Connections to repsFrom

• DREPL server

• Reading repsFrom and pulling from the target

• Reading repsTo and telling target to pull

This means it can take some time to propagate, particularly 

repsTo which are deferred created by replication on repsFrom.



Translate connections

• Of the connections the KCC deems necessary, they are 

translated into repsFrom (non-replicated attributes)

• repsFrom flags are set (particularly important for RODC)

• Stale repsFrom SHOULD be deleted

• Stale repsTo SHOULD be deleted



The end result

• Single path from any site to any site (property of a tree)

• Changes should not bounce around significantly

• Significantly reduced replication traffic

• Ability to customize who should talk to who

• Small networks (n <= 4) should have no visible effect

• Larger networks with varying connectivity shows huge effect



Challenges

• Verbose documentation

• Site-Link: ‘Multi-edge’, hyper-edge?

• White, red, black vertices?



More challenges

• Logical inconsistencies, ambiguities and omissions

• Pseudo-code vs textual description

• Easy to debug your own bugs

• Testing?

• --dot-file-dir

• --readonly --exportldif, --importldif



Incomplete features

• Trusted domains and global catalog replication

• RODC self-management

• Site-Link-Bridge Topologies

• Respecting schedules and other AD attributes

• Preferred bridgehead servers

• Replication frequency?



Incomplete features

• Failed connection and failed DC failover

• Better stale connection clean-up

• MS-DS-Replicates-NC-Reason

• Use normal replication to propagate failure info

• Better debugging and failure information

• Better defaults for modern networks



Alternative topology strategies

• What is the best topology for various networks?

• Ring algorithm from intra-site for inter-site

• Minimum cost spanning tree plus additional connections

• Fully connected bridge-head servers



Questions?

Email: garming@catalyst.net.nz


