
CTDB remix
II: Designing the Reality

Martin Schwenke <martin@meltin.net>

Samba Team
IBM (Australia Development Laboratory, Linux Technology Center)

SambaXP 2017

Martin Schwenke CTDB remix - Designing the Reality

Overview

Dreaming the Fantasy

Designing the Reality

Cluster management
Service management
IP failover

Connection tracking
Failover daemon

CTDB daemon

Martin Schwenke CTDB remix - Designing the Reality

Cluster management

Martin Schwenke CTDB remix - Designing the Reality

Cluster management

Cluster membership currently tightly integrated into ctdbd

. . . due to transport/connectivity code

Cluster leadership tightly integrated into CTDB recoverd

New daemon with cluster leadership and (basic) membership

Replaceable with 3rd party subsystem (e.g. etcd)?

ctdbd needs to decide active nodes (e.g. ban, stop)

New LOST state for known nodes that aren’t in the cluster

Need cluster-manager-specific glue in ctdbd

Martin Schwenke CTDB remix - Designing the Reality

Cluster management — daemon

ctdb clusterd

ctdb_cluster <action>

leave support ctdb ban, ctdb stop — shutdown?
join all good, as you were . . .

Martin Schwenke CTDB remix - Designing the Reality

Cluster management — daemon

ctdb clusterd — notifications

Tricky integration bits. . .

cluster-node-list all configured/possible nodes

cluster-member-list current cluster members

cluster-master which node is the leader?

Martin Schwenke CTDB remix - Designing the Reality

Service management

Martin Schwenke CTDB remix - Designing the Reality

Service management

Currently have ctdb_eventd and event scripts

Subtract IP failover handling to leave services

Replaceable with 3rd party subsystem (e.g. Pacemaker)?

Martin Schwenke CTDB remix - Designing the Reality

Service management — daemon

ctdb serviced

ctdb_serviced [-e <event-script-dir>] \

[-n <notify-script-dir>]

ctdb_service <action>

monitor-disable node is “unstable” (e.g. failover underway)
monitor-enable all good, as you were . . .

reconfigure maybe restart services? (e.g. IPs changed)
shutdown bye!

Martin Schwenke CTDB remix - Designing the Reality

Service management — daemon

ctdb serviced — events

startup starts services

shutdown stops services

monitor checks service health

reconfigure in response to ctdb_service reconfigure

Martin Schwenke CTDB remix - Designing the Reality

Service management — daemon

ctdb serviced — expected event scripts

10.failover a service, like any other. . .

20.system existing system health checks: disk/memory/swap

49.winbind existing winbind management

50.samba existing smbd/nmbd management

60.nfs existing NFS management

.

Martin Schwenke CTDB remix - Designing the Reality

Service management — daemon

ctdb serviced — notifications

Tricky integration bits. . .

service-available e.g. trigger IP failover

service-unavailable e.g. trigger IP failover

Main ctdbd does not need to know about healthy/unhealthy

ctdb status can still collate overall status

Martin Schwenke CTDB remix - Designing the Reality

Service management — daemon

ctdb serviced — miscellany

When a node is inactive, ctdb_serviced is shut down

Martin Schwenke CTDB remix - Designing the Reality

IP failover

Martin Schwenke CTDB remix - Designing the Reality

IP failover

Currently CTDB supports

Public IP addresses

Linux Virtual Server (LVS)

and includes

Connection tracking

Generic routing

Policy routing

NAT gateway

Martin Schwenke CTDB remix - Designing the Reality

IP failover

Observations

LVS is currently shoehorned into public IP addresses

Policy routing is an extension of public IP addresses

Connection tracking is an extension of public IP addresses

Public IP addresses are currently only supported on Linux!

Martin Schwenke CTDB remix - Designing the Reality

IP failover

ctdb failoverd

New daemon to handle IP failover in CTDB

IP failover “services” based on event scripts

Node-to-node communication using “tunnel” protocol

Replicated database for cluster-wide service state(s)

However, ctdb_failoverd itself is (probably) stateless

Connection tracking integrated or separate daemon?

Lift LVS (and other IP failover services?) to 1st class

Replaceable with 3rd party subsystem (e.g. Pacemaker)?

Martin Schwenke CTDB remix - Designing the Reality

IP failover — connection tracking

Currently split between. . .

smbd Hey, ctdbd! I have this new client!

ctdbd Hey other nodes, here are some connections!

NFS ctdb addtickle

Event scripts ctdb gettickles, ctdb_killtcp

Connection tracking can be decoupled from smbd and ctdbd

. . . without major structure!

So, let’s pick the low-hanging fruit first. . .

Martin Schwenke CTDB remix - Designing the Reality

IP failover — connection tracking

Factoring out connection tracking

ctdb_conntrackd [-i <commit-interval>] \

[-c <connection-helper>] \

[-r <reset-helper>] \

[-s <ctdbd-socket>]

ctdb_conntrack <action>

set-addresses reads list of “IP-address” to monitor
reset-server reads list of “IP-address interface” to reset
reset-client reads list of “IP-address interface” to reset

shutdown bye!

Martin Schwenke CTDB remix - Designing the Reality

IP failover — connection tracking

ctdb conntrackd -i <commit-interval>

ctdb_conntrackd uses new “replicated” CTDB database

Assume not fast enough to handle 5000 connections/second

Specify interval between flushing connections to DB

Even current Samba “tickle” replication is fire-and-forget!

Martin Schwenke CTDB remix - Designing the Reality

IP failover — connection tracking

ctdb conntrackd -c <connection-helper>

Default Linux helper provided

Can be replaced for testing. . .

conntrack_libnetfilter_helper

Output:

C 10.61.2.167:445 10.61.2.225:53452

D 10.61.2.167:445 10.61.2.225:53452

BYO helper?

Could even hook into Samba, ss(8) like current code

Martin Schwenke CTDB remix - Designing the Reality

IP failover — connection tracking

ctdb conntrackd -r <reset-helper>

Default Linux helper provided

Can be replaced for testing. . .

conntrack_reset <action>

server interface reads list of “TCP-connection”to reset
replaces current ctdb_killtcp
“needs” interface for packet sniffing

client reads list of “TCP-connection”to reset
replaces tickle code in ctdbd

Martin Schwenke CTDB remix - Designing the Reality

IP failover — connection tracking

ctdb conntrack reset-server

ctdb_conntrackd does:

1 Group specified server IP addresses by interface

2 Enable internal “hold” state: do not process disconnects
3 For each interface:

1 Get connections for IP addresses on interface
2 $CONNTRACK_RESET_HELPER server <interface>

4 Disable internal “hold” state

Martin Schwenke CTDB remix - Designing the Reality

IP failover — connection tracking

ctdb conntrack reset-client

ctdb_conntrackd does:

1 Get connections for specified server IP addresses

2 Delete connections from database
3 N times (default=3):

1 Send gratuitous ARP for each IP address
2 $CONNTRACK_RESET_HELPER client

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd

ctdb_failoverd [-e <event-script-dir>] \

[-n <notify-script-dir>] \

[-s <ctdbd-socket>]

ctdb_failover <action>

reload reloads configuration
failover initiates an IP failover

shutdown bye!

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — basic events

startup starts processes, initialises TDB(s) from configuration

shutdown stops processes, clears node config from TDB(s)

monitor checks processes, IP addresses are as expected

reload reloads configuration

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — expected event scripts

10.pubip public IP address handling, policy routing

20.lvs Linux Virtual Server support

30.static routes existing simple static route management

40.natgw existing NAT gateway support

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — failover events

Synchronised across cluster:

calculate determine changes to be made

,
(+ additional “master” step)

release for public IPs: reset server end of connections,
release unwanted addresses

take for public IPs: take any newly required addresses,
send gratuitous ARPs, tickle client end of connections

finalise final tweaks, routing changes, . . .

Most failover services will only need “finalise” and maybe
“calculate”

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — failover events

Synchronised across cluster:

calculate determine changes to be made

,
(+ additional “master” step)

release for public IPs: reset server end of connections,
release unwanted addresses

take for public IPs: take any newly required addresses,
send gratuitous ARPs, tickle client end of connections

finalise final tweaks, routing changes, . . .

Most failover services will only need “finalise” and maybe
“calculate”

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — failover events

Synchronised across cluster:

calculate determine changes to be made

,
(+ additional “master” step)

release for public IPs: reset server end of connections,
release unwanted addresses

take for public IPs: take any newly required addresses,
send gratuitous ARPs, tickle client end of connections

finalise final tweaks, routing changes, . . .

Most failover services will only need “finalise” and maybe
“calculate”

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — failover events

Synchronised across cluster:

calculate determine changes to be made

,
(+ additional “master” step)

release for public IPs: reset server end of connections,
release unwanted addresses

take for public IPs: take any newly required addresses,
send gratuitous ARPs, tickle client end of connections

finalise final tweaks, routing changes, . . .

Most failover services will only need “finalise” and maybe
“calculate”

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — failover events

Synchronised across cluster:

calculate determine changes to be made

,
(+ additional “master” step)

release for public IPs: reset server end of connections,
release unwanted addresses

take for public IPs: take any newly required addresses,
send gratuitous ARPs, tickle client end of connections

finalise final tweaks, routing changes, . . .

Most failover services will only need “finalise” and maybe
“calculate”

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — failover events

Synchronised across cluster:

calculate determine changes to be made

,
(+ additional “master” step)

release for public IPs: reset server end of connections,
release unwanted addresses

take for public IPs: take any newly required addresses,
send gratuitous ARPs, tickle client end of connections

finalise final tweaks, routing changes, . . .

Most failover services will only need “finalise” and maybe
“calculate”

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — failover events

Synchronised across cluster:

calculate determine changes to be made,
(+ additional “master” step)

release for public IPs: reset server end of connections,
release unwanted addresses

take for public IPs: take any newly required addresses,
send gratuitous ARPs, tickle client end of connections

finalise final tweaks, routing changes, . . .

Most failover services will only need “finalise” and maybe
“calculate”

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — 10.pubip example

startup/reload: Load IP address configuration into
ctdb_failover.tdb

1 calculate master: (IP-state, node-states) → IP-state’
IP layout(s) stored in ctdb_failover.tdb

2 calculate: each node determines IPs to release/take/move,
written to local file

3 release: each node releases held but unwanted IPs
. . . after killing server end of connections

4 take: each node takes wanted but unheld IPs
. . . moves IPs between interfaces as needed
. . . sends gratuitous ARPs, tickles client end of connections

5 finalise: fix policy routes, ...

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — 10.pubip example

startup/reload: Load IP address configuration into
ctdb_failover.tdb

1 calculate master: (IP-state, node-states) → IP-state’
IP layout(s) stored in ctdb_failover.tdb

2 calculate: each node determines IPs to release/take/move,
written to local file

3 release: each node releases held but unwanted IPs
. . . after killing server end of connections

4 take: each node takes wanted but unheld IPs
. . . moves IPs between interfaces as needed
. . . sends gratuitous ARPs, tickles client end of connections

5 finalise: fix policy routes, ...

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — 10.pubip example

startup/reload: Load IP address configuration into
ctdb_failover.tdb

1 calculate master: (IP-state, node-states) → IP-state’
IP layout(s) stored in ctdb_failover.tdb

2 calculate: each node determines IPs to release/take/move,
written to local file

3 release: each node releases held but unwanted IPs
. . . after killing server end of connections

4 take: each node takes wanted but unheld IPs
. . . moves IPs between interfaces as needed
. . . sends gratuitous ARPs, tickles client end of connections

5 finalise: fix policy routes, ...

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — 10.pubip example

startup/reload: Load IP address configuration into
ctdb_failover.tdb

1 calculate master: (IP-state, node-states) → IP-state’
IP layout(s) stored in ctdb_failover.tdb

2 calculate: each node determines IPs to release/take/move,
written to local file

3 release: each node releases held but unwanted IPs
. . . after killing server end of connections

4 take: each node takes wanted but unheld IPs
. . . moves IPs between interfaces as needed
. . . sends gratuitous ARPs, tickles client end of connections

5 finalise: fix policy routes, ...

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — 10.pubip example

startup/reload: Load IP address configuration into
ctdb_failover.tdb

1 calculate master: (IP-state, node-states) → IP-state’
IP layout(s) stored in ctdb_failover.tdb

2 calculate: each node determines IPs to release/take/move,
written to local file

3 release: each node releases held but unwanted IPs
. . . after killing server end of connections

4 take: each node takes wanted but unheld IPs
. . . moves IPs between interfaces as needed
. . . sends gratuitous ARPs, tickles client end of connections

5 finalise: fix policy routes, ...

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — 10.pubip example

startup/reload: Load IP address configuration into
ctdb_failover.tdb

1 calculate master: (IP-state, node-states) → IP-state’
IP layout(s) stored in ctdb_failover.tdb

2 calculate: each node determines IPs to release/take/move,
written to local file

3 release: each node releases held but unwanted IPs
. . . after killing server end of connections

4 take: each node takes wanted but unheld IPs
. . . moves IPs between interfaces as needed
. . . sends gratuitous ARPs, tickles client end of connections

5 finalise: fix policy routes, ...

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — notifications

Now for the tricky integration bits. . .

failover-begin

ip-release-pre NFS Ganesha grace. . .

ip-release-post

ip-take-pre

ip-take-post

ip-layout-changed e.g. ctdb_service reconfigure,
replaces ipreallocated event

failover-end

Martin Schwenke CTDB remix - Designing the Reality

IP failover — daemon

ctdb failoverd — miscellany

On shutdown event, all IPs are released

When a node is inactive, ctdb_failoverd is shut down

Inactive nodes do not take part in failover

ctdb ip replaced by helper that queries ctdb_failover.tdb

Martin Schwenke CTDB remix - Designing the Reality

CTDB daemon

Martin Schwenke CTDB remix - Designing the Reality

CTDB daemon

What remains?

Node transport/coordination, databases

Eventually separate out database daemon(s)

ctdbd handles startup/shutdown

. . . and node inactive/active transitions

Martin Schwenke CTDB remix - Designing the Reality

Legal Statement

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM is a registered trademark of International Business
Machines Corporation in the United States and/or other
countries.

Linux is a registered trademark of Linus Torvalds.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

Martin Schwenke CTDB remix - Designing the Reality

Questions?

Martin Schwenke CTDB remix - Designing the Reality

