Samba/Microsoft alignment: possible future directions

Tom Talpey

Microsoft

Outline

- This talk was going to be about Durable Remote Memory
 - Until I was informed it was the keynote ©
- So it's first going to cover things from Samba and Microsoft that, together, we:
 - (have) **D**elivered
 - (are) **D**eveloping
 - (will further) **D**iscuss
- All of which, I hope, may lead to our continued collaboration.

Delivered

Observations on the state of Microsoft/Samba SMB3

SMB3 from Microsoft and Samba

- SMB3 is the key storage protocol for Windows Interoperability
- Servers
 - Windows SMB 3.1.1
 - In use for file and block storage services, with RDMA
 - Azure SMB 3.0
 - Azure File service for VMs and applications, at scale
 - Samba SMB 3.1.1
 - File service including rich related enterprise features
- Clients
 - Windows SMB 3.1.1
 - Samba/Linux SMB 3.1.1

Samba / Windows Interop

- Samba interoperation with Windows
 - Samba Server works with Windows SMB clients
 - Samba Client works with Windows SMB servers
 - Some features (RDMA, persistent handle recovery) slow to appear
- But, Windows is now only one aspect of the SMB3 world

SMB3 in the Cloud

- Linux guests are the dominant presence in Azure Cloud
- Azure Files service supports application file access
- To access Azure Files, Linux CIFS Client requires
 - Robust persistent handle recovery
 - Scalable performance at cloud service latencies
 - True Posix semantics expected by applications
 - SMB3 and Azure Files need these too!
- Strong desire to close this gap

Azure Files

- "net use //thecloud" SMB3.0 service on cloud port 445 (SMB2.1 also)
- In support of cloud Windows and Linux guests
 - https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-files
 - https://docs.microsoft.com/en-us/azure/storage/storage-how-to-use-files-linux
- Windows guests working
- Linux guests some assembly required
- SMB3 readiness for Posix in Linux client problematic for apps
- NFS support a popular request

And oh by the way

- SMB1-based attacks are increasing
- It's fast-approaching the time to go beyond deprecation
- Many Windows SKUs already disable SMB1 by default
- No supported Windows version requires it
 - Windows XP ended the SMB1-only era
- It's time for Samba to discuss this again
 - Server drop SMB1 support in future 4.x?
 - Client refactor cifs.ko to SMB1 legacy, and innovate with a new smb3.ko?

Microsoft Linux (also FreeBSD)

- Linux Integration Services (Enlightenment drivers)
 - Efficient guests on Hyper-V (and in Cloud)
- HVSocket
 - Efficient, secure guest access to Hyper-V host partition
 - AF_HYPERV socket type
 - https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/make-integration-service
- Samba specifically leverage these features?
 - Open to a discussion

Developing

Development at Microsoft with direct benefits to Samba

Linux Subsystem for Windows

- "Ubuntu on Windows"
 - Actual Ubuntu (Xenial) binaries, on modified Xenial kernel (4.4.0)
 - Uses Windows personality support to emulate system calls
 - Roots in former NT Posix Subsystem, SUA/SFU, etc.
 - Exposes local NTFS filesystems
- Relationship to Samba: "apt install samba"
 - Which mostly works!
 - Server issues
 - Port 445 collision, privileges
 - Client issues
 - Kernel module support

LSW Samba client

Cifs-utils ©

ttalpey@TTALPEY1:~\$ sudo apt install cifs-utils

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

keyutils libavahi-client3 libavahi-common-data libavahi-common3 libcups2 libldb1 libpython-stdlib libpython2.7 libpython2.7-minimal libpython2.7-stdlib libtalloc2 libtdb1 libtevent0 libwbclient0 python python-crypto python-ldb python-minimal python-samba python-talloc python-tdb python2.7 python2.7-minimal samba-common samba-

common-bin

samba-libs

Suggested packages:

smbclient winbind cups-common python-doc python-tk python-crypto-dbg python-crypto-doc python2.7-doc binutils

binfmt-support heimdal-clients

The following NEW packages will be installed:

cifs-utils keyutils libavahi-client3 libavahi-common-data libavahi-common3 libcups2 libldb1 libpython-stdlib libpython2.7-libpython2.7-minimal libpython2.7-stdlib libtalloc2 libtdb1 libtevent0 libwbclient0 python python-crypto python-ldb python-minimal python-samba python-talloc python-tdb python2.7 python2.7-minimal samba-common samba-common-bin samba-libs

0 upgraded, 27 newly installed, 0 to remove and 0 not upgraded.

Need to get 12.7 MB of archives.

After this operation, 56.3 MB of additional disk space will be used.

Do you want to continue? [Y/n]

•••

Client 🙁

ttalpey@TTALPEY1:~\$ sudo mount.cifs //nas.local/public ./mnt Password for root@//nas.local/public:

mount error: cifs filesystem not supported by the system

mount error(19): No such device

Refer to the mount.cifs(8) manual page (e.g. man mount.cifs)

LSW Samba server

Server ©

root@TTALPEY1:~# apt install samba

Selecting previously unselected package samba-vfs-modules.

Preparing to unpack .../samba-vfs-modules 2%3a4.3.11+dfsg-0ubuntu0.16.04.6 amd64.deb ...

Unpacking samba-vfs-modules (2:4.3.11+dfsg-0ubuntu0.16.04.6)...

Processing triggers for man-db (2.7.5-1)...

Processing triggers for libc-bin (2.23-0ubuntu7) ...

Processing triggers for systemd (229-4ubuntu16) ...

Processing triggers for ureadahead (0.100.0-19) ...

Processing triggers for ufw (0.35-0ubuntu2) ...

Setting up python-dnspython (1.12.0-1)...

Setting up tdb-tools (1.3.8-2) ...

update-alternatives: using /usr/bin/tdbbackup.tdbtools to provide /usr/bin/tdbbackup (tdbbackup) in auto mode

Setting up libfile-copy-recursive-perl (0.38-1) ...

Setting up update-inetd (4.43) ...

Setting up samba (2:4.3.11+dfsg-0ubuntu0.16.04.6) ...

Adding group 'sambashare' (GID 116) ...

Done.

invoke-rc.d: could not determine current runlevel

invoke-rc.d: could not determine current runlevel

invoke-rc.d: could not determine current runlevel

Setting up attr (1:2.4.47-2) ...

Setting up libaio1:amd64 (0.3.110-2)...

Setting up samba-dsdb-modules (2:4.3.11+dfsg-0ubuntu0.16.04.6)...

Setting up samba-vfs-modules (2:4.3.11+dfsg-0ubuntu0.16.04.6)...

Processing triggers for libc-bin (2.23-0ubuntu7) ...

Processing triggers for systemd (229-4ubuntu16) ...

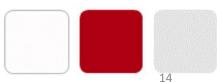
Processing triggers for ureadahead (0.100.0-19) ...

Processing triggers for ufw (0.35-0ubuntu2) ...

root@TTALPEY1:~#

Service (2)

ttalpey@TTALPEY1:~\$ sudo service samba start * Starting NetBIOS name server nmbd * Starting SMB/CIFS daemon smbd root@TTALPEY1:~# cat /var/log/smbd.log [2017/05/03 07:19:57.885986, 0] ../lib/util/become daemon.c:124(daemon ready) STATUS=daemon 'smbd' finished starting up and ready to serve connections [2017/05/03 07:19:57.917769, 0] ../source3/lib/util_sock.c:357(open_socket_in)
open_socket_in(): setsockopt: SO_REUSEPORT = true on port 445 failed with error = Protocol not available [2017/05/03 07:19:57.917972, 0] ../source3/lib/util sock.c:396(open socket in) bind failed on port 445 socket addr = ::. Error = Permission denied [2017/05/03 07:19:57.918129, 0] ../source3/smbd/server.c:709(smbd open one socket) smbd_open_once_socket: open_socket_in: Permission denied [2017/05/03 07:19:57.918498, 0] ../source3/lib/util_sock.c:357(open_socket_in) open socket in(): setsockopt: SO REUSEPORT = true on port 139 failed with error = Protocol not available [2017/05/03 07:19:57.918935, 0] ../source3/smbd/server.c:709(smbd open one socket) smbd open once socket: open socket in: Permission denied



Samba LSW Opportunities

- Any opportunities for Samba in the above?
 - No commitments below, just ideas for discussion
- Samba Server on LSW maybe not?
 - Conflicts with Windows SMB3, at a minimum
 - But it sure is an interesting question!
- Samba Client on LSW maybe yes?
 - New remote filesystem support for LSW apps?
 - Needs SMB3/CIFS module with kernel networking support, or...
 - SMB3/CIFS module with Hyper-V Socket
 - SMB3/CIFS module with guest RDMA!?

SMB Direct Linux

- Microsoft prototyping SMB Direct support for Linux!
- Client-only
 - Not contemplating doing a server implementation
- Simplifying initial principles:
 - Connections are made via RDMA directly no TCP, no multichannel
 - Send/receive transfers only (no direct data placement via RDMA Read / RDMA Write)
 - Transfers up to ~1MB are supported with SMB Direct fragmentation

SMB Direct

- Initial implementation
 - Connects, and negotiates SMB3.1.1 on Windows Server RDMA connection
 - Transfers data successfully
 - Currently, fails on sustained file copy (server detects MID out-of-range)
- Not (yet) supported:
 - SMB Direct placement (RDMA Read/Write)
 - Requires explicit memory registration and care with RDMA verbs (completions)
 - Full multichannel, with fallback/forward
 - Requires significant client transport architecture work

Discussions

The future of SMB3 Unix interop

Unix (Posix) Extensions

- The key to tying it all together
- And, long-overdue
- Do we now have sufficient understanding of requirements?
- Of a protocol?
- It's time to move forward.

History - SMB2 Unix Extensions

- SMB1 Extensions SNIA 2002
- SMB2 Unix Extensions "Project" 2010
 - https://www.snia.org/sites/default/orig/sdc archives/2010 presentations/wednesday/TomTalpey-Unix ExtensionsForSMB2.pdf
- ~6 years of discussion
 - Many valid reasons for the delay, but it's probably time
 - Apple, other extensions also relevant
 - Goal: a single standard (ideally)

Whiteboards of earlier discussions

- From Tom's phone @ previous plugfests
 - IMG**20151002**
 - IMG<u>2016</u>0622
- Note: the lists pretty much fit on a single board
- Are we ready to write it down?
 - Next month at the Redmond plugfest?
 - This Fall at the SMB Plugfest / SDC?
- The lights are still on at unixsmb2.org
 - Thanks, Chris!

SambaXP 2017 Göttingen

Durability

Another suggestion for future engagement

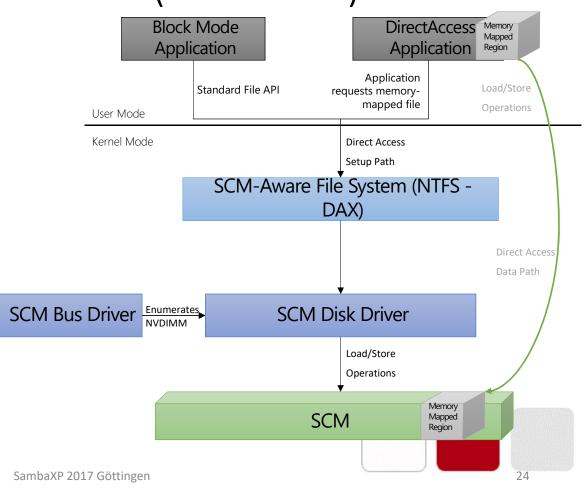
Persistent Memory

- Presence on current and future server motherboards
- PMEM/DAX emergence
- RDMA standardization
- Push Mode
- RDMA Extensions
- SNIA NVMP

Windows PMEM Support

- Persistent Memory is supported in Windows 10 and Windows Server 2016
 - PM support is foundational in Windows and is SKU-independent
- Support for JEDEC-defined NVDIMM-N devices available in
 - Windows Server 2016
 - Windows 10 (Anniversary Update Fall 2016)
- Access methods:
 - ✓ Direct Access (DAX) Filesystem
 - Mapped files with load/store/flush paradigm
 - Cached and noncached with read/write paradigm
 - ✓ Block-mode ("persistent ramdisk")
 - Raw disk paradigm
 - ✓ Application interfaces
 - Mapped and traditional file
 - NVM Programming Library
 - "PMEM-aware" open coded

Direct Access Architecture (Windows)


Overview

- Support in Windows Server 2016 and Windows 10 Anniversary Update (Fall 2016)
- App has direct access to Storage Class Memory (SCM/Pmem) via existing memory-mapping semantics
- Updates directly modify SCM, Storage Stack not involved
- DAX volumes identified through new flag

Characteristics

- True device performance (no software overhead)
- Byte-Addressable
- Filter Drivers relying on I/O may not work or attach – no I/O, new volume flag
- AV Filters can still operate (Windows Defender already updated)

IO in DAX mode (Windows)

- Memory Mapped Access
 - This is true zero-copy access to storage
 - An application has direct access to persistent memory
 - Important → No paging reads or paging writes will be generated
- Cached IO Access
 - The cache manager creates a cache map that maps directly to PM hardware
 - The cache manager copies directly between user's buffer and persistent memory
 - Cached IO has one-copy access to persistent storage
 - Cached IO is coherent with memory mapped IO
 - As in memory mapped IO, no paging reads or paging writes are generated
 - No Cache Manager Lazy Writer thread
- Non-Cached IO Access
 - Is simply converted to cached IO by the file system
 - Cache manager copies directly between user's buffer and persistent memory
 - Is coherent with cached and memory mapped IO

Backward App Compatibility on PM Hardware

- Block Mode Volumes
 - Maintains existing storage semantics
 - All IO operations traverse the storage stack to the PM disk driver
 - Sector atomicity guaranteed by the PM disk driver
 - Has shortened path length through the storage stack to reduce latency
 - No storport or miniport drivers
 - No SCSI translations
 - Fully compatible with existing applications
 - Supported by all Windows file systems
 - Works with existing file system filters
 - Block mode vs. DAX mode is chosen at format time

Performance Comparison (WS2016)

4K random writes

1 Thread, single core

	IOPS	Avg Latency (ns)	MB / Sec
NVMe SSD	14,553	66,632	56.85
Block Mode NVDIMM	148,567	6,418	580.34
DAX Mode NVDIMM	1,112,007	828	4,343.78

Similar Linux Facilities

- DAX
 - Same name, different implementation
- NOVA
 - UCSD project http://nvsl.ucsd.edu/
- NVML
 - Same open source library http://pmem.io/nvml/
- Significant industry convergence

Going Remote

- One local copy of storage isn't storage at all
 - Basically, temp data
- Enterprise-grade storage requires replication
 - Multi-device quorum
 - In addition to integrity, privacy, manageability, ... (requirements vary)
- Remote access is required
- Pmem value is all about LATENCY
 - Single digit microsecond remote latency goal
 - Which btw is 2-3 orders of magnitude better than today's block storage
 - We can take steps to get there, with great benefit at each

➤ Use RDMA

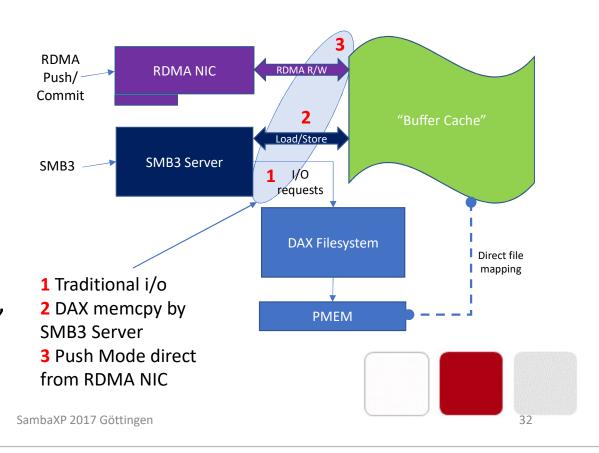
Full latency benefit motivates an RDMA protocol extension

RDMA Protocols

- Need a remote guarantee of <u>Durability</u>
- RDMA Write alone is not sufficient for this semantic
- An extension is required
 - Proposed "RDMA Commit", a.k.a. "RDMA Flush"
- Executes like RDMA Read
 - Ordered, Flow controlled, acknowledged
 - Initiator requests specific byte ranges to be made durable
 - Responder acknowledges only when durability complete
 - Strong consensus on these basics
- Being discussed in IBTA, SNIA and other venues
 - · Details being worked out
 - Scope of durability: region-based, region-list-based, connection, all under discussion
 - Connection scope seems most efficient for implementations
 - Additional semantics possible (signaling, ordering, integrity, ...)

RDMA-Aware Storage Protocol Use

- SMB3/SMB Direct
 - With future potential "Push Mode"
- NFS/RDMA
 - And future pNFS/RDMA layout (Christoph Hellwig proposing)
- Other
 - Commit to any remotely-mappable device, e.g. NVMe with a PCIe BAR
 - Anything that can be memory-registered and accessed via RDMA



Example: Going Remote – SMB3

- SMB3 RDMA and "Push Mode" discussed at previous SNIA Storage Developers Conferences
- Enables zero-copy remote read/write to DAX file
 - Ultra-low latency and overhead
- 2, 3 can be enabled even before RDMA Commit extensions become available, with slight extra cost

The (Near?) Future

- I'd like to see Samba support DAX on Linux
 - Initially, as an ordinary filesystem ("1" above)
 - A fast one since it's RAM, albeit block mode
 - Ideally, with r/w access via memory-mapped files ("2" above)
 - Way faster since via memcpy not block driver
- Eventually, via push-mode RDMA ("3" above)
 - SMB3 implementation potentially simple (one FSCTL and some leasing rules)
 - https://www.snia.org/sites/default/files/SDC/2016/presentations/persistent_ memory/Tom_Talpey_Low_Latency_Remote_Storage_A_Full-stack_View.pdf

THANK YOU

