
SMB3 Extensions for Low Latency
Tom Talpey

Microsoft

May 12, 2016

Problem Statement

• “Storage Class Memory”
• A new, disruptive class of storage

• Nonvolatile medium with RAM-like performance
• Low latency, high throughput, high capacity

• Resides on memory bus
• Byte addressable

• Or also on PCIe bus
• Block semantics

• New interface paradigms are rising to utilize it
• Many based on time-honored methods (mapped files, etc)

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 2

Low Latency Storage

• 2000 – HDD latency – SAN arrays accelerated using memory
• ~5000 usec latency

• 2010 – SSD latency –mere mortals can configure high perf storage
• ~100 usec latency (50x improvement)

• 2016 – beginning of Storage Class Memory (SCM) revolution
• <1 usec latency (local), <10 usec latency (remote) – (~100x improvement)

• Volume deployment imminent (NVDIMM today)

5000x change over 15 years!

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 3

Storage Latencies and Storage API

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

HDD

SSD

SCM

DRAM

>500x Reduction in Latency,
>500x more IOPs
• Requires re-architecture of IO stack
• Requires re-architecture of net stack

(for replication)
• Applications will program differently

• instant on in-memory
• will consider moving to sync 50x Reduction in Latency,

1000x more IOPs
• Moving from SAN to SDS
• Commoditization of storage IT

Never use async Always use async

uSec

2 GHz Cycles40 1000 200K 1M 4

Need for A New Programming
Model
• Current programming model

• Data records are created in volatile memory
• Memory operations

• Copied to HDD or SSD to make them persistent
• I/O operations

• Opportunities provided by NVM devices
• Software to skip the steps that copy data from memory to disks.
• Software can take advantages of the unique capabilities of both persistent memory and flash NVM

• Need for a new programming model
• Application writes persistent data directly to NVM which can be treated just like RAM
• Mapped files, DAX, NVML

• Storage can follow this new model

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 5

Local Filesystems and Local APIs

• DAX
• Direct Access Filesystem
• Windows and Linux (very) similar

• NVML
• NVM Programming Library
• Open source, included in Linux, future included in Windows

• Specialized interfaces
• Databases
• Transactional libraries
• Language extensions (!)
• etc

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 6

Push Mode

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 7

RDMA Transfers – Storage
Protocols Today
• Direct placement model (simplified

and optimized)
• Client advertises RDMA region in

scatter/gather list
• Server performs all RDMA

• More secure: client does not access
server’s memory

• More scalable: server does not
preallocate to client

• Faster: for parallel (typical) storage
workloads

• SMB3 uses for READ and WRITE
• Server ensures durability
• NFS/RDMA, iSER similar

• Interrupts and CPU on both sides
May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

RDMA Read (with local invalidate)

Send (with invalidate)

Send

DATA

RDMA Write

DATA

Send (with invalidate)

Send

READ

WRITE

Client Server

Register

(Register)

Register

8

Latencies

• Undesirable latency contributions
• Interrupts, work requests

• Server request processing

• Server-side RDMA handling

• CPU processing time
• Request processing

• I/O stack processing and buffer management
• To “traditional” storage subsystems

• Data copies

• Can we reduce or remove all of the above to PM?

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 9

RDMA Push Mode (Schematic)
• Enhanced direct placement model

• Client requests server resource of file, memory region, etc

• MAP_REMOTE_REGION(offset, length, mode r/w)

• Server pins/registers/advertises RDMA handle for region

• Client performs all RDMA

• RDMA Write to region

• RDMA Read from region (“Pull mode”)

• No requests of server (no server CPU/interrupt)

• Achieves near-wire latencies

• Client remotely commits to PM (new RDMA operation!)

• Ideally, no server CPU interaction

• RDMA NIC optionally signals server CPU

• Operation completes at client only when remote
durability is guaranteed

• Client periodically updates server via master protocol
• E.g. file change, timestamps, other metadata

• Server can call back to client
• To recall, revoke, manage resources, etc

• Client signals server (closes) when done

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

RDMA Read

Send

Send

DATA

RDMA Write
DATA

Send

Send

Remote Direct Access

Unregister

Register

RDMA Write
DATA

RDMA Commit (new)

Push

Pull

10

Push Mode Implications
• Historically, RDMA storage protocols avoided push mode
• For good reasons:

• Non-exposure of server memory
• Resource conservation
• Performance (perhaps surprisingly)

• Server scheduling of data with I/O
• Write congestion control – server-mediated data pull

• Today:
• Server memory can be well-protected with little performance compromise
• Resources are scalable
• However, congestion issue remains

• Upper storage layer crediting
• Hardware (RDMA NIC) flow control
• QoS infrastructure

• Existing Microsoft/MSR innovation to the rescue?

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 11

Consistency and Durability - Platform

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 12

RDMA with byte-addressable PM – Intel HW Architecture - Background
• ADR – Asynchronous DRAM Refresh

• Allows DRAM contents to be saved to NVDIMM on power loss

• Requires special hardware with PS or supercap support

• ADR Domain – All data inside of the domain is protected by ADR and will
make it to NVM before power dies. The integrated memory controller
(iMC) is currently inside of the ADR Domain.

• HW does not guarantee the order that cache lines are written to NVM
during an ADR event

• IIO – Integrated IO Controller
• Controls IO flow between PCIe devices and Main Memory

• “Allocating write transactions”

• PCI Root Port will utilize write buffers backed by LLC core cache
when the target write buffer has WB attribute

• Data buffers naturally aged out of cache to main memory

• “Non-Allocating write transactions”

• PCI Root Port Write transactions utilize buffers not backed
by cache

• Forces write data to move to the iMC without cache delay

• Various Enable/Disable methods, non-default

• DDIO – Data Direct IO
• Allows Bus Mastering PCI & RDMA IO to move data directly in/out of LLC

Core Caches

• Allocating Write transactions will utilize DDIO

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

CPU

ADR Domain

DRAM/NVDIMM

PCI Func

PCI Func

RNIC

Allocating Write
Transactions

PCI DMA Write Flow

RNIC RDMA Write Flow

Allocating Write Flow

CPU Write Flow

PCI DMA Read Flow

RNIC RDMA Read Flow

Allocating Read Flow

Non-Allocating Write Flow

Non-Allocating Read Flow

CPU Read Flow

PCI Root Port

IIO

iMC

L
L
C

CORE

CORE

CORE

CORE

Credit: Intel
13

Durability Workarounds
• Alternatives proposed – also see SDC 2015 Intel presentation

• Significant performance (latency) implications, however!

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

CPU

IIO

PCI Root Port

RNIC

Internal BUFFERS

Non-Allocating Write
Transactions

L
L
C

CORE

CORE

CORE

CORE

RNIC RDMA Read Flow

RNIC RDMA Write Flow

Write Data forced to persistence by ADR Flow

iMC

NVM

ADR Domain

RDMA Write Data forced to ADR
Domain by RDMA Read Flow

CPU

IIO

PCI Root Port

RNIC

Internal BUFFERS

Allocating Write
Transactions

L
L
C

CORE

CORE

CORE

CORE

RNIC RDMA Send/Receive Flow

RNIC RDMA Write Flow

Send/Receive Callback
CLFLUSHOPT/SFENCE Flow

iMC

NVM

RDMA Write Data forced to iMC by
Send/Receive Flow

Send/Receive Callback
PCOMMIT/SFENCE Flow

Credit: Intel
14

RDMA Durability – Protocol Extension

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 15

“Doing it right” - RDMA protocols

• Need a remote guarantee of Durability

• RDMA Write alone is not sufficient for this semantic
• Completion at sender does not mean data was placed

• NOT that it was even sent on the wire, much less received
• Some RNICs give stronger guarantees, but never that data was stored remotely

• Processing at receiver means only that data was accepted
• NOT that it was sent on the bus
• Segments can be reordered, by the wire or the bus
• Only an RDMA completion at receiver guarantees placement

• And placement != commit/durable

• No Commit operation

• Certain platform-specific guarantees can be made
• But the remote client cannot know them
• E.g. RDMA Read-after-RDMA Write (which won’t generally work)

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 16

RDMA protocol extension

• Two “obvious” possibilities
• RDMA Write with placement acknowledgement

• Advantage: simple API – set a “push bit”
• Disadvantage: significantly changes RDMA Write semantic, data path (flow control, buffering,

completion). Requires creating a “Write Ack”.
• Requires significant changes to RDMA Write hardware design

• And also to initiator work request model (flow controlled RDMA Writes would block the send work
queue)

• Undesirable

• RDMA “Commit”
• New operation, flow controlled/acknowledged like RDMA Read or Atomic
• Disadvantage: new operation
• Advantage: simple API – “flush”, operates on one or more regions (allows batching), preserves

existing RDMA Write semantic (minimizing RNIC implementation change)
• Desirable

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 17

RDMA Commit (concept)

• RDMA Commit
• New wire operation
• Implementable in iWARP and IB/RoCE

• Initiating RNIC provides region list, other commit parameters
• Under control of local API at client/initiator

• Receiving RNIC queues operation to proceed in-order
• Like RDMA Read or Atomic processing currently
• Subject to flow control and ordering

• RNIC pushes pending writes to targeted regions
• Alternatively, NIC may simply opt to push all writes

• RNIC performs PM commit
• Possibly interrupting CPU in current architectures
• Future (highly desirable to avoid latency) perform via PCIe

• RNIC responds when durability is assured

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 18

Other RDMA Commit
Semantics
• Desirable to include other semantics with Commit:

• Atomically-placed data-after-commit
• E.g. “log pointer update”

• Immediate data
• E.g. to signal upper layer

• An entire message
• For more complex signaling
• Can be ordinary send/receive, only with new specific ordering requirements

• Additional processing, e.g. integrity check
• These may be best implemented in ordered following operations

• Decisions will be workload-dependent
• Small log-write scenario will always commit
• Bulk data movement will permit batching

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 19

Platform-specific Extensions

• PCI extension to support Commit
• Allow NIC to provide durability directly and efficiently
• To Memory, CPU, PCI Root, PM device, PCIe device, …
• Avoids CPU interaction
• Supports strong data consistency model

• Performs equivalent of:
• CLFLUSHOPT (region list)
• PCOMMIT

• Or if NIC is on memory bus or within CPU complex…
• Other possibilities exist
• Platform-specific implementations, on platform-local basis

• Standard extensions are most desirable

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 20

Latencies (expectations)

• Single-digit microsecond remote Write+Commit
• Push mode minimal write latencies <<10us (2-3us + data wire time)
• Commit time is NIC-managed and platform+payload dependent
• Note, this is order-of-magnitude improvement over today’s transfer mode

• 30-50us as mentioned

• Remote Read also possible
• Roughly same latency as write, but without commit

• No server interrupt
• Zero server CPU overhead
• Once RDMA and PCIe extensions in place

• Single client interrupt
• Moderation and batching can reduce further when pipelining

• Deep parallelism with Multichannel and flow control management

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 21

SMB3 Push Mode

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 22

SMB3 Low Latency - Architecture

• The following is only a possible approach!
• Applies to any DAX-enabled OS e.g. Linux, Windows, et al.
• Disclaimer: this is NOT a specification, and NOT a protocol

• Hope that Samba, and all SMB3 and SMB Direct implementations can
adopt this to take advantage of PMEM-capable systems as they
appear

• DAX:
• http://www.snia.org/sites/default/files/NVM/2016/presentations/Neal%20Ch

ristiansen_SCM_in_Windows_NVM_Summit.pdf
• http://www.snia.org/sites/default/files/NVM/2016/presentations/JeffMoyer_

Persistent-Memory-in-Linux.pdf

23May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

http://www.snia.org/sites/default/files/NVM/2016/presentations/Neal Christiansen_SCM_in_Windows_NVM_Summit.pdf
http://www.snia.org/sites/default/files/NVM/2016/presentations/JeffMoyer_Persistent-Memory-in-Linux.pdf

SMB3 Commit - Traditional Mode
• Basic steps:

• Open file, obtain handle and lease
• Write file with SMB2_WRITE (or read with

SMB2_READ)
• Buffered or writethrough
• Server process performs load/store operations

to PMEM file
• Flush file with SMB2_FLUSH

• Performs Commit when share is DAX-enabled
• Handle possible recalls
• Close file

• Advantages:
• Traditional API, fully functional

• Disadvantages:
• Higher latencies from roundtrips, message

signaling, work requests

24

RDMA Read (with local invalidate)

Send (with invalidate)

Send

DATA

RDMA Write

DATA

Send (with invalidate)

Send

READ

WRITE

Client Server

Register

(Register)

Register

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

SMB3 Push Mode

• Basic steps:
• Open DAX-enabled file
• Obtain a lease
• Request a push-mode registration
• While (TRUE)

• Push (or pull) data
• Commit data to durability

• Release registration
• Drop lease
• Close handle

• Details follow

25

RDMA Read

Send

Send

DATA

RDMA Write
DATA

Send

Send

Remote Direct Access

Unregister

Register

RDMA Write
DATA

RDMA Commit (new)

Push

Pull

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

SMB3 Push Mode - Open

• Opening file performs “usual” processing
• Authorization, handle setup, etc
• New SMB2 Create Context (perhaps) signals desired Push Mode
• Sent in conjunction with requesting a lease

• If DAX filesystem and lease, establishes mapped-file r/w interface to server
• Returns the create context to indicate push mode is available

• Obtaining a lease performs “usual” processing plus
• The lease provides a means to manage mapping
• If mapping changes, or if later registration revokes, lease recall is performed

• DAX mode may require certain “traditional” client steps
• Issued via SMB3
• E.g. extending file to allocate blocks / establish mapping

• Otherwise, nothing unusual

26May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

SMB3 Push Mode – Registration

• Need to register file region(s) for RDMA Write from client

• Client issues new FSCTL
• MAP_REMOTE_REGION(offset, length, mode r/w)

• Server pins mapping, RDMA registers pages, returns RDMA region handle

• Client can request multiple regions
• And multiple r/w modes

• Client can remotely write or read

27May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

SMB3 Push Mode – Operation

• Client performs remote writes and reads directly to and from file
• Entirely within RDMA layers, no server processing at all!

• If remote RDMA Commit operation available:
• Client commits writes via RDMA

• Otherwise:
• Client commits vis SMB2_FLUSH

• Client may periodically update file metadata timestamps, etc
• Using SMB2_IOCTL(FILE_BASIC_INFORMATION), etc

• Note – Push Mode cannot:
• Add blocks / append file
• Punch holes, etc
• These must be done with traditional SMB3 operations

28May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

SMB3 Push Mode - Recall

• Server must manage sharing and registration

• Client ownership of a lease covers both

• Recalled upon:
• Sharing violation (as usual)
• Mapping change (new DAX callback)
• Registration change (RDMA resource behavior)

• Managed by Server itself

• When recalled, client performs the usual:
• Flush any dirty buffers (and possibly commit)
• Return the lease
• Possibly re-obtain a new lease and re-register for push mode

• If not, fall back to “normal” SMB3 operations

29May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

SMB3 Push Mode – Done

• When done, “usual” processing
• Return lease / close handle

• Returning the lease and/or closing handle clears push mode registration
• Or also… an explicit fsctl? TBD

• Push Mode registration is reset during handle recovery
• Must be re-obtained after handle recovered (like leases)

• New mapping, new RDMA handle
• If issued early, RDMA operations would fail and kill connection

30May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

SMB3 Push Mode – Fun Fact #1

• All push mode handles are in
“buffered” mode

• Server opens DAX files this
way (both Linux and
Windows)
• Direct access create context is

hint to do this
• Server may do it anyway, when

DAX is detected
• Allows load/store for r/w

• Buffered mode enables direct
mapping and direct RDMA
reading/writing of PMEM-
resident file
• Direct mapping allows RDMA

read/write, and RDMA Commit

31

Server

RDMA NIC

SMB3

RDMA
Push

“Buffer Cache”

RDMA R/W

Load/Store

DAX Filesystem

PMEM

I/O
requests

Direct file
mapping

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

SMB3 Push Mode – Fun Fact #2

• Push mode management requires new server plumbing

• Registration recalls may be needed for:
• Sharing violations/file changes (as usual)

• DAX filesystem events (file relocation, extension, etc)

• RDMA resource constraints

• Any other server matter

• Lease recall is mechanism for all

 Server “upcalls” may originate within and without filesystem

32May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

SMB3 Push Mode – Fun Fact #3

• Push Mode fan-in from many (1000’s+) clients can congest interface

• And also congest the PMEM

• RDMA itself does not provide congestion control

• But, SMB3 does
• With credits, and also Storage QoS

• Existing client-side behavior can mitigate

• RNICs can also provide QoS control

• More thinking needed here

33May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

SMB3 Push Mode – Fun Fact #4

• Data-in-flight protection and data-at-rest integrity validation?
• In SMB3, provided by signing and/or encryption, and the backend file store

• Push mode transfers all data via RDMA, “below” SMB3

• RDMA protocols do not currently support signing or encryption
• Specifications refer to IPsec or other lower-layer facility

• Extensions to be discussed in RDMA standards areas

• Remote integrity also not available
• Remote server CPU not at all involved in transfers

• Extensions also being discussed for RDMA remote integrity validation

34May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

External RDMA Efforts
• Requirements and Protocol

• For RDMA Commit operation
• Also local PM behaviors

• Memory registration
• Independent of transport

• Applies to iWARP, IB, RoCE

• IETF Working Group
• STORM: RDMA (iWARP) and

Storage (iSCSI)
• Recently closed, but active for

discussion
• Another WG, or individual process

TBD

• Also discussing in
• IBTA (IB/RoCE) expected
• SNIA NVM TWG
• Open Fabrics DS/DA? etc.

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin

https://datatracker.ietf.org/doc/draft-talpey-rdma-commit/

35

Resources

• SNIA NVM Programming TWG:
• http://www.snia.org/forums/sssi/nvmp

• SDC 2015:
• http://www.snia.org/events/storage-developer/presentations15

• NVM Summit 2016:
• http://www.snia.org/nvmsummit2016

• Open Fabrics Workshop:
• https://openfabrics.org/index.php/2016-ofa-workshop-presentations.html

May 12, 2016 Tom Talpey - Microsoft - SambaXP 2016 Berlin 36

http://www.snia.org/forums/sssi/nvmp
http://www.snia.org/events/storage-developer/presentations15
http://www.snia.org/nvmsummit2016
https://openfabrics.org/index.php/2016-ofa-workshop-presentations.html

