
The past, present and future of Samba messaging

SambaXP 2015
Göttingen

Volker Lendecke

Samba Team / SerNet

2015-04-20



Parallelism based on messages

I Wikipedia: An actor is a computational entity that, in response to a
message it receives, can concurrently:

I send a finite number of messages to other actors;
I create a finite number of new actors;
I designate the behavior to be used for the next message it receives.
I There is no assumed sequence to the above actions and they could be

carried out in parallel.

I Many languages embed message passing these days
I Erlang, Google go, Akka for JVM

I Some problems with threaded programming vanish with
message-based parallelism

I Others of course appear :-)

vl
The past, present and future of Samba messaging

(2 / 13)



Why Inter *Process* Communication?

I Erlang, Go and others provide intra-OS-process messages
I Threading based on OS threads plus VM threads
I All in one memory space

I Dependency on the virtual machine
I Distribution to processes possibly more reliable

I A crash in one OS process has less effect on others

I Better NUMA affinity
I Isolated memory maps

I Process architecture has helped Samba to go clustered

I Interoperability to other languages

vl
The past, present and future of Samba messaging

(3 / 13)



Unix Signals

I One of the oldest Unix IPC mechanism
I Asynchronous delivery
I Almost no information transferred

I Difficult to use together with threads
I If possible, receive signals in one thread only

I When used, not much can be done in a signal handler
I Posix lists only 135 functions as aync signal safe

I Watch out for EINTR result of most syscalls

vl
The past, present and future of Samba messaging

(4 / 13)



Shared Memory

I Same memory pages visible in multiple processes
I Blurs the distinction between threads and processes

I Fastest IPC mechanism
I No kernel involvement for data transfer
I Good for transferring mass data

I Limited use for message passing
I No good signalling mechanism

I Needs coordinated access
I Locks, Mutexes

vl
The past, present and future of Samba messaging

(5 / 13)



fcntl locks

I Advisory byte range locks
I Shared (F RDLCK) or exclusive (F WRLCK) locks
I Just an IPC mechanism: fcntl locks do not block read/write

I Weird semantics regarding duplicated file descriptors
I Closing any fd on a file loses locks on dup’ed fds

I Very bad scaling
I fcntl locks maintained in a linked list
I Posix suggests deadlock detection → locks are not per-file
I Linux has one big global spinlock for all fcntl lock operations
I Thundering herd when thousands of waiters are unblocked

I Automatic cleanup at process exit
I Lock waiters are not notified that a process crashed

vl
The past, present and future of Samba messaging

(6 / 13)



Process Shared Robust Mutexes

I pthread mutex t: pthread API to implement critical sections
I Originally intended for multiple threads within a single process

I Implementation under Linux with atomic operations
I No syscall in the non-contended case
I Waiting for a locked mutex uses a syscall

I PTHREAD PROCESS SHARED: Mutexes in shared memory
I Downside: If a mutex holder crashes, nobody can clean up

I PTHREAD MUTEX ROBUST: EOWNERDEAD
I When a mutex holder dies, a subsequent pthread mutex lock gets

EOWNERDEAD
I Linux and Solaris only

vl
The past, present and future of Samba messaging

(7 / 13)



Samba Messaging

I Samba has a multi-writer key/value hash table: TDB
I Shared Memory
I Coordination via fcntl locks
I Where available: Process Shared Robust Mutexes

I Very fast for heavy concurrent small record updaters
I Messaging based on tdb:

I Every process has a record in a tdb as a mailbox
I Signalling via SIGUSR1

I Simple, but bad under high load
I fcntl load brings system down
I With robust mutexes it is okay

vl
The past, present and future of Samba messaging

(8 / 13)



Unix Domain Datagram Sockets

I ”UDP” on the local box
I Contrary to UDP, AF UNIX DGRAM sockets are reliable

I One socket per participating process
I Limited message size, sender must fragment

I FD passing possible via sendmsg()
I Asynchronous send into full queue:

I Poll with nonblocking send: High load by senders

I Blocking connected send scales well under Linux
I No thundering herd, contrary to thousands of writers into a pipe
I Well tuned for syslog via /dev/log

I Access to the socket dir can become a bottleneck

vl
The past, present and future of Samba messaging

(9 / 13)



Replace ctdb messaging

I All cluster communication goes through ctdbd
I Single Process, Single Threaded
I Only 1 CPU used for inter-node messaging

I Samba assumes reliable messaging
I Stream Socket, i.e. TCP between nodes
I TCP connection setup too expensive per message

I One proxy process per peer
I Open a normal Unix DGRAM socket
I Forward to another node
I Sender process decides which proxy to use

vl
The past, present and future of Samba messaging

(10 / 13)



Unix Domain Stream Sockets

I Datagram Sockets not overload-safe on FreeBSD
I ENOBUFS returned under overload
I Unlike Linux, FreeBSD can’t do graceful blocking send

I Every message involves namespace operations
I Not truly scalable, requires a read lock on the socket directory

I File Descriptors are cheap
I epoll/kqueue designed to scale

I N ∗M Stream Sockets between processes

vl
The past, present and future of Samba messaging

(11 / 13)



tmond

I How to pass stream socket fds?
I Every smbd listens on a stream socket
I connect() does not behave nicely under overload

I tmond provides a central hub
I Every messaging process connects() once

I Fresh stream to a peer: socketpair() and sendmsg() via tmond
I Process Monitoring via tmond

I Locks in user space: Wait for a process to go away, retry
I General replacement for ctdb watch us/ctdb unwatch

vl
The past, present and future of Samba messaging

(12 / 13)



Questions?

vl@samba.org / vl@sernet.de

vl
The past, present and future of Samba messaging

(13 / 13)


