
CTDB: Where to from here and how can we get
there?

Martin Schwenke <martin@meltin.net>

Samba Team
IBM (Australia Development Laboratory, Linux Technology Center)

Martin Schwenke CTDB: Where to from here and how can we get there?



What are we talking about?

Martin Schwenke CTDB: Where to from here and how can we get there?



What are we talking about?

What is CTDB?

Martin Schwenke CTDB: Where to from here and how can we get there?



What are we talking about?

What does CTDB do?

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



What are we talking about?

What does CTDB do?

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



What are we talking about?

What does CTDB do?

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



What are we talking about?

What does CTDB do?

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



What are we talking about?

What does CTDB do?

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



What are we talking about?

What does CTDB do?

Cluster membership and leadership

Cluster database and database recovery

Cluster-wide messaging transport for Samba

Service management and monitoring

IP address management, failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Current architecture

CTDB daemons

Processes that exist for the lifetime of CTDB

Main daemon

Recovery daemon

CTDB processes

Ephemeral processes to avoid blocking the main daemon

Lock helper
Event helper
Vacuuming
Persistent transaction
Read-only record
revocation

State change notification

Recovery lock sanity check

Reloading public IP address
configuration

Database traverse

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Current architecture

CTDB daemons

Processes that exist for the lifetime of CTDB

Main daemon

Recovery daemon

CTDB processes

Ephemeral processes to avoid blocking the main daemon

Lock helper
Event helper
Vacuuming
Persistent transaction
Read-only record
revocation

State change notification

Recovery lock sanity check

Reloading public IP address
configuration

Database traverse

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Current architecture

CTDB daemons

Processes that exist for the lifetime of CTDB

Main daemon

Recovery daemon

CTDB processes

Ephemeral processes to avoid blocking the main daemon

Lock helper
Event helper
Vacuuming
Persistent transaction
Read-only record
revocation

State change notification

Recovery lock sanity check

Reloading public IP address
configuration

Database traverse

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Current architecture

CTDB daemons

Processes that exist for the lifetime of CTDB

Main daemon

Recovery daemon

CTDB processes

Ephemeral processes to avoid blocking the main daemon

Lock helper
Event helper
Vacuuming
Persistent transaction
Read-only record
revocation

State change notification

Recovery lock sanity check

Reloading public IP address
configuration

Database traverse

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Current architecture

CTDB daemons

Processes that exist for the lifetime of CTDB

Main daemon

Recovery daemon

CTDB processes

Ephemeral processes to avoid blocking the main daemon

Lock helper
Event helper
Vacuuming
Persistent transaction
Read-only record
revocation

State change notification

Recovery lock sanity check

Reloading public IP address
configuration

Database traverse

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Mapping function to daemon

Main daemon

Cluster membership

Cluster database access

Cluster wide messaging transport

Public IP address management

Service management

Recovery daemon

Cluster leadership

Cluster database recovery

Public IP address failover and consistency checking

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Design Limitations

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up

Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Design Limitations

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up

Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Design Limitations

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up

Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Design Limitations

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up

Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Design Limitations

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up
Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Design Limitations

Main daemon and recovery daemon overloaded

Mix of time critical and non-critical in single daemon
Difficult to maintain in asynchronous, non-blocking design

Communication bottleneck

All messages must pass through (single threaded) main
daemon

Cluster leader election

Each node tries to become leader on starting up
Does not scale with number of nodes!

Database recovery

Cluster leader recovers databases one at a time

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Design Limitations. . .

Centralised state

Some state is in main daemon but is used in recovery daemon

Tight coupling

Membership, service health, IP allocation are tightly coupled
Also consider cluster leader elections, database recovery, IP
allocation, . . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Design Limitations. . .

Centralised state

Some state is in main daemon but is used in recovery daemon

Tight coupling

Membership, service health, IP allocation are tightly coupled
Also consider cluster leader elections, database recovery, IP
allocation, . . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Implementation Limitations

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral
Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)
Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon
First hurdle for multi-daemon design

Unstructured CLI and configuration

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Implementation Limitations

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral
Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)
Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon
First hurdle for multi-daemon design

Unstructured CLI and configuration

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Implementation Limitations

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral
Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)
Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon
First hurdle for multi-daemon design

Unstructured CLI and configuration

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Implementation Limitations

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral
Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)
Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon
First hurdle for multi-daemon design

Unstructured CLI and configuration

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

Implementation Limitations

Protocol is “structs on the wire”

32-bit vs 64-bit, not endian-neutral
Hand-marshalling of structures

Simpler protocol – single packet request/response

Streams / Large packets (e.g. multiple database records)
Large data buffer (talloc), Large send/recv (socket handling)

No (internal) messaging framework

Fire-and-forget method of communication with recovery
daemon
First hurdle for multi-daemon design

Unstructured CLI and configuration

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

So?

Big Problems

Limitations:

Scalability
Database recovery

Maintainability:

Organic growth: hacks and band-aids
Ad hoc data structures
Ad hoc data replication (connection info, NFS locks)

Catch 22

We need help. . .

However, barrier to entry is high!

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

So?

Big Problems

Limitations:

Scalability
Database recovery

Maintainability:

Organic growth: hacks and band-aids
Ad hoc data structures
Ad hoc data replication (connection info, NFS locks)

Catch 22

We need help. . .

However, barrier to entry is high!

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

So?

Big Problems

Limitations:

Scalability
Database recovery

Maintainability:

Organic growth: hacks and band-aids
Ad hoc data structures
Ad hoc data replication (connection info, NFS locks)

Catch 22

We need help. . .

However, barrier to entry is high!

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

So?

Big Problems

Limitations:

Scalability
Database recovery

Maintainability:

Organic growth: hacks and band-aids
Ad hoc data structures
Ad hoc data replication (connection info, NFS locks)

Catch 22

We need help. . .

However, barrier to entry is high!

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

So?

Big Problems

Limitations:

Scalability
Database recovery

Maintainability:

Organic growth: hacks and band-aids
Ad hoc data structures
Ad hoc data replication (connection info, NFS locks)

Catch 22

We need help. . .

However, barrier to entry is high!

Martin Schwenke CTDB: Where to from here and how can we get there?



Where are we?

So?

Big Problems

Limitations:

Scalability
Database recovery

Maintainability:

Organic growth: hacks and band-aids
Ad hoc data structures
Ad hoc data replication (connection info, NFS locks)

Catch 22

We need help. . .

However, barrier to entry is high!

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Separate functionality in individual daemons

Cluster management daemon

Public IP address daemon

Service management daemon

Database daemon

. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Separate functionality in individual daemons

Cluster management daemon

Public IP address daemon

Service management daemon

Database daemon

. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Separate functionality in individual daemons

Cluster management daemon

Public IP address daemon

Service management daemon

Database daemon

. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Separate functionality in individual daemons

Cluster management daemon

Public IP address daemon

Service management daemon

Database daemon

. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Separate functionality in individual daemons

Cluster management daemon

Public IP address daemon

Service management daemon

Database daemon

. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Separate functionality in individual daemons

Cluster management daemon

Public IP address daemon

Service management daemon

Database daemon

. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Cluster management daemon

Membership:

Connected according to heartbeat or similar
Active if not banned, administratively stopped

Leadership:

Leader coordinates database recovery
Leader coordinates public IP address (re)allocation

Can we support etcd, Heartbeat (or similar) as an alternative?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Cluster management daemon

Membership:

Connected according to heartbeat or similar
Active if not banned, administratively stopped

Leadership:

Leader coordinates database recovery
Leader coordinates public IP address (re)allocation

Can we support etcd, Heartbeat (or similar) as an alternative?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Cluster management daemon

Membership:

Connected according to heartbeat or similar
Active if not banned, administratively stopped

Leadership:

Leader coordinates database recovery
Leader coordinates public IP address (re)allocation

Can we support etcd, Heartbeat (or similar) as an alternative?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Cluster management daemon

Membership:

Connected according to heartbeat or similar
Active if not banned, administratively stopped

Leadership:

Leader coordinates database recovery
Leader coordinates public IP address (re)allocation

Can we support etcd, Heartbeat (or similar) as an alternative?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Used as (or in) callback from other daemons when status
changes

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Used as (or in) callback from other daemons when status
changes

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Used as (or in) callback from other daemons when status
changes

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Used as (or in) callback from other daemons when status
changes

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses

Used as (or in) callback from other daemons when status
changes

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Used as (or in) callback from other daemons when status
changes

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Public IP address daemon

Single daemon with public IP address:

Management
Failover
Consistency checking

Simple management and status CLI

Simple IP (re)allocation trigger:

Simple CLI command: these nodes can host addresses
Used as (or in) callback from other daemons when status
changes

An interface like this should also allow support for LVS,
HAProxy, . . .

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Service management daemon

Four functions:

Startup
Shutdown
Health monitoring

Public IP address daemon callback(s) registered to be run on
state changes

Reconfiguration when IP addresses change

What addresses should services no longer listen on?
What addresses should services listen on?

Could we also support something like Pacemaker?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Service management daemon

Four functions:

Startup
Shutdown

Health monitoring

Public IP address daemon callback(s) registered to be run on
state changes

Reconfiguration when IP addresses change

What addresses should services no longer listen on?
What addresses should services listen on?

Could we also support something like Pacemaker?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Service management daemon

Four functions:

Startup
Shutdown
Health monitoring

Public IP address daemon callback(s) registered to be run on
state changes

Reconfiguration when IP addresses change

What addresses should services no longer listen on?
What addresses should services listen on?

Could we also support something like Pacemaker?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Service management daemon

Four functions:

Startup
Shutdown
Health monitoring

Public IP address daemon callback(s) registered to be run on
state changes

Reconfiguration when IP addresses change

What addresses should services no longer listen on?
What addresses should services listen on?

Could we also support something like Pacemaker?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Service management daemon

Four functions:

Startup
Shutdown
Health monitoring

Public IP address daemon callback(s) registered to be run on
state changes

Reconfiguration when IP addresses change

What addresses should services no longer listen on?
What addresses should services listen on?

Could we also support something like Pacemaker?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Database daemon

After separating everything else, this is what should remain of
the current main daemon.

The main focus of CTDB

Functions:

Database operations
Recovery
Vacuuming (garbage collection)

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Database daemon

After separating everything else, this is what should remain of
the current main daemon.

The main focus of CTDB

Functions:

Database operations
Recovery
Vacuuming (garbage collection)

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Database daemon

After separating everything else, this is what should remain of
the current main daemon.

The main focus of CTDB

Functions:

Database operations
Recovery
Vacuuming (garbage collection)

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Database daemon

After separating everything else, this is what should remain of
the current main daemon.

The main focus of CTDB

Functions:

Database operations
Recovery
Vacuuming (garbage collection)

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection
Each daemon has to listen only on a single socket
Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection
Each daemon has to listen only on a single socket
Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection
Each daemon has to listen only on a single socket
Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection

Each daemon has to listen only on a single socket
Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection
Each daemon has to listen only on a single socket

Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection
Each daemon has to listen only on a single socket
Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke CTDB: Where to from here and how can we get there?



Where to?

Messaging

Scalable messaging with multiple daemons across multiple
nodes

Using Samba’s Unix domain datagram sockets

Avoids establishing a connection
Each daemon has to listen only on a single socket
Need to find sender’s socket to send reply

How to identify a specific deamon / process on a specific
node?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Itch to re-design everything

Every new developer’s approach . . .

Some problems can be designed away

Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Freizeit?

We don’t have unlimited people and time. . .

. . . so this will have to be an incremental effort

What can we do to support incremental development?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Itch to re-design everything

Every new developer’s approach . . .

Some problems can be designed away

Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Freizeit?

We don’t have unlimited people and time. . .

. . . so this will have to be an incremental effort

What can we do to support incremental development?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Itch to re-design everything

Every new developer’s approach . . .

Some problems can be designed away

Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Freizeit?

We don’t have unlimited people and time. . .

. . . so this will have to be an incremental effort

What can we do to support incremental development?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Itch to re-design everything

Every new developer’s approach . . .

Some problems can be designed away

Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Freizeit?

We don’t have unlimited people and time. . .

. . . so this will have to be an incremental effort

What can we do to support incremental development?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Itch to re-design everything

Every new developer’s approach . . .

Some problems can be designed away

Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Freizeit?

We don’t have unlimited people and time. . .

. . . so this will have to be an incremental effort

What can we do to support incremental development?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Itch to re-design everything

Every new developer’s approach . . .

Some problems can be designed away

Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Freizeit?

We don’t have unlimited people and time. . .

. . . so this will have to be an incremental effort

What can we do to support incremental development?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Itch to re-design everything

Every new developer’s approach . . .

Some problems can be designed away

Daunting task to ensure no knowledge is lost (e.g. database
vacuuming and recovery interactions)

Freizeit?

We don’t have unlimited people and time. . .

. . . so this will have to be an incremental effort

What can we do to support incremental development?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

New CTDB CLI

First decide how users will interact with CTDB

Only break user interaction once

Decide on new command structure (e.g. ip or virsh)

e.g. ctdb ip connection add 10.0.2.132:2049 10.0.1.33:987

If command omitted then read list of commands from stdin:

$ ctdb ip connection

add 10.0.2.132:2049 10.0.1.33:987

del 10.0.2.133:2049 10.0.1.31:986

If arguments omitted then read list of arguments from stdin:

$ ctdb ip connection add

10.0.2.132:2049 10.0.1.33:987

10.0.2.133:2049 10.0.1.31:986

Use readline (or similar) when interactive?

First wrap the current implementation!

Talk to new daemons as they are implemented

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

New CTDB CLI

First decide how users will interact with CTDB

Only break user interaction once

Decide on new command structure (e.g. ip or virsh)

e.g. ctdb ip connection add 10.0.2.132:2049 10.0.1.33:987

If command omitted then read list of commands from stdin:

$ ctdb ip connection

add 10.0.2.132:2049 10.0.1.33:987

del 10.0.2.133:2049 10.0.1.31:986

If arguments omitted then read list of arguments from stdin:

$ ctdb ip connection add

10.0.2.132:2049 10.0.1.33:987

10.0.2.133:2049 10.0.1.31:986

Use readline (or similar) when interactive?

First wrap the current implementation!

Talk to new daemons as they are implemented

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

New CTDB CLI

First decide how users will interact with CTDB

Only break user interaction once

Decide on new command structure (e.g. ip or virsh)

e.g. ctdb ip connection add 10.0.2.132:2049 10.0.1.33:987

If command omitted then read list of commands from stdin:

$ ctdb ip connection

add 10.0.2.132:2049 10.0.1.33:987

del 10.0.2.133:2049 10.0.1.31:986

If arguments omitted then read list of arguments from stdin:

$ ctdb ip connection add

10.0.2.132:2049 10.0.1.33:987

10.0.2.133:2049 10.0.1.31:986

Use readline (or similar) when interactive?

First wrap the current implementation!

Talk to new daemons as they are implemented

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

New CTDB CLI

First decide how users will interact with CTDB

Only break user interaction once

Decide on new command structure (e.g. ip or virsh)

e.g. ctdb ip connection add 10.0.2.132:2049 10.0.1.33:987

If command omitted then read list of commands from stdin:

$ ctdb ip connection

add 10.0.2.132:2049 10.0.1.33:987

del 10.0.2.133:2049 10.0.1.31:986

If arguments omitted then read list of arguments from stdin:

$ ctdb ip connection add

10.0.2.132:2049 10.0.1.33:987

10.0.2.133:2049 10.0.1.31:986

Use readline (or similar) when interactive?

First wrap the current implementation!

Talk to new daemons as they are implemented

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

New CTDB CLI

First decide how users will interact with CTDB

Only break user interaction once

Decide on new command structure (e.g. ip or virsh)

e.g. ctdb ip connection add 10.0.2.132:2049 10.0.1.33:987

If command omitted then read list of commands from stdin:

$ ctdb ip connection

add 10.0.2.132:2049 10.0.1.33:987

del 10.0.2.133:2049 10.0.1.31:986

If arguments omitted then read list of arguments from stdin:

$ ctdb ip connection add

10.0.2.132:2049 10.0.1.33:987

10.0.2.133:2049 10.0.1.31:986

Use readline (or similar) when interactive?

First wrap the current implementation!

Talk to new daemons as they are implemented

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

New CTDB CLI

First decide how users will interact with CTDB

Only break user interaction once

Decide on new command structure (e.g. ip or virsh)

e.g. ctdb ip connection add 10.0.2.132:2049 10.0.1.33:987

If command omitted then read list of commands from stdin:

$ ctdb ip connection

add 10.0.2.132:2049 10.0.1.33:987

del 10.0.2.133:2049 10.0.1.31:986

If arguments omitted then read list of arguments from stdin:

$ ctdb ip connection add

10.0.2.132:2049 10.0.1.33:987

10.0.2.133:2049 10.0.1.31:986

Use readline (or similar) when interactive?

First wrap the current implementation!

Talk to new daemons as they are implemented

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

New CTDB CLI

First decide how users will interact with CTDB

Only break user interaction once

Decide on new command structure (e.g. ip or virsh)

e.g. ctdb ip connection add 10.0.2.132:2049 10.0.1.33:987

If command omitted then read list of commands from stdin:

$ ctdb ip connection

add 10.0.2.132:2049 10.0.1.33:987

del 10.0.2.133:2049 10.0.1.31:986

If arguments omitted then read list of arguments from stdin:

$ ctdb ip connection add

10.0.2.132:2049 10.0.1.33:987

10.0.2.133:2049 10.0.1.31:986

Use readline (or similar) when interactive?

First wrap the current implementation!

Talk to new daemons as they are implemented

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

New CTDB CLI

First decide how users will interact with CTDB

Only break user interaction once

Decide on new command structure (e.g. ip or virsh)

e.g. ctdb ip connection add 10.0.2.132:2049 10.0.1.33:987

If command omitted then read list of commands from stdin:

$ ctdb ip connection

add 10.0.2.132:2049 10.0.1.33:987

del 10.0.2.133:2049 10.0.1.31:986

If arguments omitted then read list of arguments from stdin:

$ ctdb ip connection add

10.0.2.132:2049 10.0.1.33:987

10.0.2.133:2049 10.0.1.31:986

Use readline (or similar) when interactive?

First wrap the current implementation!

Talk to new daemons as they are implemented

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

New CTDB CLI

First decide how users will interact with CTDB

Only break user interaction once

Decide on new command structure (e.g. ip or virsh)

e.g. ctdb ip connection add 10.0.2.132:2049 10.0.1.33:987

If command omitted then read list of commands from stdin:

$ ctdb ip connection

add 10.0.2.132:2049 10.0.1.33:987

del 10.0.2.133:2049 10.0.1.31:986

If arguments omitted then read list of arguments from stdin:

$ ctdb ip connection add

10.0.2.132:2049 10.0.1.33:987

10.0.2.133:2049 10.0.1.31:986

Use readline (or similar) when interactive?

First wrap the current implementation!

Talk to new daemons as they are implemented

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

New CTDB CLI

First decide how users will interact with CTDB

Only break user interaction once

Decide on new command structure (e.g. ip or virsh)

e.g. ctdb ip connection add 10.0.2.132:2049 10.0.1.33:987

If command omitted then read list of commands from stdin:

$ ctdb ip connection

add 10.0.2.132:2049 10.0.1.33:987

del 10.0.2.133:2049 10.0.1.31:986

If arguments omitted then read list of arguments from stdin:

$ ctdb ip connection add

10.0.2.132:2049 10.0.1.33:987

10.0.2.133:2049 10.0.1.31:986

Use readline (or similar) when interactive?

First wrap the current implementation!

Talk to new daemons as they are implemented

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Configuration location and format

Once again, we should break this (only) once!

Modular configuration?

.conf file format?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Configuration location and format

Once again, we should break this (only) once!

Modular configuration?

.conf file format?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Configuration location and format

Once again, we should break this (only) once!

Modular configuration?

.conf file format?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Configuration location and format

Once again, we should break this (only) once!

Modular configuration?

.conf file format?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)
Attach to new daemons as peer, talking new protocol
Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .
. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)
Attach to new daemons as peer, talking new protocol
Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .
. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)
Attach to new daemons as peer, talking new protocol
Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .
. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)
Attach to new daemons as peer, talking new protocol
Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .
. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)
Attach to new daemons as peer, talking new protocol
Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .
. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)
Attach to new daemons as peer, talking new protocol
Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .
. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)

Attach to new daemons as peer, talking new protocol
Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .
. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)
Attach to new daemons as peer, talking new protocol

Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .
. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)
Attach to new daemons as peer, talking new protocol
Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .

. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)
Attach to new daemons as peer, talking new protocol
Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .
. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)
Attach to new daemons as peer, talking new protocol
Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .
. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)
Attach to new daemons as peer, talking new protocol
Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .
. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Tunnel new protocol over old

Start splitting things out as soon as possible!

Need inter-node transport for new daemons

Currently ctdbd handles all messaging. . .

CTDB SRVID TUNNEL NEW PROTOCOL

Proxy:

Attach to ctdbd as client (like current recovery daemon)
Attach to new daemons as peer, talking new protocol
Wrap new packets in CTDB SRVID TUNNEL NEW PROTOCOL . . .
. . . send to remote node, unwrap, forward to new daemon

Really?

This will really handle all the cases?

No, but it will minimise the amount of protocol translation. . .

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Loose coupling via callbacks

Daemons don’t need to know everything about each other

Most of the inter-daemon events don’t happen often

Performance not critical

Simplest callback mechanism would be to execute an external
program

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Loose coupling via callbacks

Daemons don’t need to know everything about each other

Most of the inter-daemon events don’t happen often

Performance not critical

Simplest callback mechanism would be to execute an external
program

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Loose coupling via callbacks

Daemons don’t need to know everything about each other

Most of the inter-daemon events don’t happen often

Performance not critical

Simplest callback mechanism would be to execute an external
program

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Loose coupling via callbacks

Daemons don’t need to know everything about each other

Most of the inter-daemon events don’t happen often

Performance not critical

Simplest callback mechanism would be to execute an external
program

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Loose coupling via callbacks

Daemons don’t need to know everything about each other

Most of the inter-daemon events don’t happen often

Performance not critical

Simplest callback mechanism would be to execute an external
program

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callback for unhealthy node state change

1 Service management daemon runs IP daemon’s “reallocate IP
addresses” callback

2 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

3 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Put some smarts into the callback scripts

Instead of putting corner cases into daemons and complicating
the code (e.g. NoIPTakeoverOnAllDisabled) . . .

. . . keep the daemons as simple as possible and handle some of
the corner cases in the callback scripts

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callback for unhealthy node state change

1 Service management daemon runs IP daemon’s “reallocate IP
addresses” callback

2 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

3 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Put some smarts into the callback scripts

Instead of putting corner cases into daemons and complicating
the code (e.g. NoIPTakeoverOnAllDisabled) . . .

. . . keep the daemons as simple as possible and handle some of
the corner cases in the callback scripts

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callback for unhealthy node state change

1 Service management daemon runs IP daemon’s “reallocate IP
addresses” callback

2 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

3 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Put some smarts into the callback scripts

Instead of putting corner cases into daemons and complicating
the code (e.g. NoIPTakeoverOnAllDisabled) . . .

. . . keep the daemons as simple as possible and handle some of
the corner cases in the callback scripts

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callback for unhealthy node state change

1 Service management daemon runs IP daemon’s “reallocate IP
addresses” callback

2 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

3 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Put some smarts into the callback scripts

Instead of putting corner cases into daemons and complicating
the code (e.g. NoIPTakeoverOnAllDisabled) . . .

. . . keep the daemons as simple as possible and handle some of
the corner cases in the callback scripts

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callback for unhealthy node state change

1 Service management daemon runs IP daemon’s “reallocate IP
addresses” callback

2 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

3 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Put some smarts into the callback scripts

Instead of putting corner cases into daemons and complicating
the code (e.g. NoIPTakeoverOnAllDisabled) . . .

. . . keep the daemons as simple as possible and handle some of
the corner cases in the callback scripts

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callback for unhealthy node state change

1 Service management daemon runs IP daemon’s “reallocate IP
addresses” callback

2 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

3 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Put some smarts into the callback scripts

Instead of putting corner cases into daemons and complicating
the code (e.g. NoIPTakeoverOnAllDisabled) . . .

. . . keep the daemons as simple as possible and handle some of
the corner cases in the callback scripts

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callback for unhealthy node state change

1 Service management daemon runs IP daemon’s “reallocate IP
addresses” callback

2 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

3 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Put some smarts into the callback scripts

Instead of putting corner cases into daemons and complicating
the code (e.g. NoIPTakeoverOnAllDisabled) . . .

. . . keep the daemons as simple as possible and handle some of
the corner cases in the callback scripts

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callbacks for active/inactive node state changes

1 Cluster manager runs “maybe recover” callback for database
daemon, passes updated list of active nodes

2 Database daemon recovers databases

3 Database daemon runs IP daemon’s “reallocate IP addresses”
callback

4 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

5 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callbacks for active/inactive node state changes

1 Cluster manager runs “maybe recover” callback for database
daemon, passes updated list of active nodes

2 Database daemon recovers databases

3 Database daemon runs IP daemon’s “reallocate IP addresses”
callback

4 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

5 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callbacks for active/inactive node state changes

1 Cluster manager runs “maybe recover” callback for database
daemon, passes updated list of active nodes

2 Database daemon recovers databases

3 Database daemon runs IP daemon’s “reallocate IP addresses”
callback

4 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

5 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callbacks for active/inactive node state changes

1 Cluster manager runs “maybe recover” callback for database
daemon, passes updated list of active nodes

2 Database daemon recovers databases

3 Database daemon runs IP daemon’s “reallocate IP addresses”
callback

4 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

5 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callbacks for active/inactive node state changes

1 Cluster manager runs “maybe recover” callback for database
daemon, passes updated list of active nodes

2 Database daemon recovers databases

3 Database daemon runs IP daemon’s “reallocate IP addresses”
callback

4 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

5 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Callbacks for active/inactive node state changes

1 Cluster manager runs “maybe recover” callback for database
daemon, passes updated list of active nodes

2 Database daemon recovers databases

3 Database daemon runs IP daemon’s “reallocate IP addresses”
callback

4 Callback script gathers node states (active/inactive,
enabled/disabled), calculates which nodes should host public
IP addresses

5 Callback script invokes IP daemon CLI, sends list of nodes
that can host IP addresses

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Event daemon

In the longer term, each daemon could just run its own event
scripts via an event library

That’s a big step due to current mix of events

So:

1 Add an event daemon
2 Have it handle all the current events, unchanged
3 Split the events and run an event daemon per daemon
4 Perhaps convert to an event library instead of a separate

daemon

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Event daemon

In the longer term, each daemon could just run its own event
scripts via an event library

That’s a big step due to current mix of events

So:

1 Add an event daemon
2 Have it handle all the current events, unchanged
3 Split the events and run an event daemon per daemon
4 Perhaps convert to an event library instead of a separate

daemon

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Event daemon

In the longer term, each daemon could just run its own event
scripts via an event library

That’s a big step due to current mix of events

So:

1 Add an event daemon
2 Have it handle all the current events, unchanged
3 Split the events and run an event daemon per daemon
4 Perhaps convert to an event library instead of a separate

daemon

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Event daemon

In the longer term, each daemon could just run its own event
scripts via an event library

That’s a big step due to current mix of events

So:

1 Add an event daemon
2 Have it handle all the current events, unchanged
3 Split the events and run an event daemon per daemon
4 Perhaps convert to an event library instead of a separate

daemon

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Event daemon

In the longer term, each daemon could just run its own event
scripts via an event library

That’s a big step due to current mix of events

So:
1 Add an event daemon

2 Have it handle all the current events, unchanged
3 Split the events and run an event daemon per daemon
4 Perhaps convert to an event library instead of a separate

daemon

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Event daemon

In the longer term, each daemon could just run its own event
scripts via an event library

That’s a big step due to current mix of events

So:
1 Add an event daemon
2 Have it handle all the current events, unchanged

3 Split the events and run an event daemon per daemon
4 Perhaps convert to an event library instead of a separate

daemon

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Event daemon

In the longer term, each daemon could just run its own event
scripts via an event library

That’s a big step due to current mix of events

So:
1 Add an event daemon
2 Have it handle all the current events, unchanged
3 Split the events and run an event daemon per daemon

4 Perhaps convert to an event library instead of a separate
daemon

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Event daemon

In the longer term, each daemon could just run its own event
scripts via an event library

That’s a big step due to current mix of events

So:
1 Add an event daemon
2 Have it handle all the current events, unchanged
3 Split the events and run an event daemon per daemon
4 Perhaps convert to an event library instead of a separate

daemon

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol

Currently structs on the wire

Add abstraction. . .

. . . but still put the same structs on the wire

Then “pull out the tablecloth”!

Well defined protocol, using XDR (or similar)

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol

Currently structs on the wire

Add abstraction. . .

. . . but still put the same structs on the wire

Then “pull out the tablecloth”!

Well defined protocol, using XDR (or similar)

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol

Currently structs on the wire

Add abstraction. . .

. . . but still put the same structs on the wire

Then “pull out the tablecloth”!

Well defined protocol, using XDR (or similar)

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol

Currently structs on the wire

Add abstraction. . .

. . . but still put the same structs on the wire

Then “pull out the tablecloth”!

Well defined protocol, using XDR (or similar)

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol

Currently structs on the wire

Add abstraction. . .

. . . but still put the same structs on the wire

Then “pull out the tablecloth”!

Well defined protocol, using XDR (or similar)

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol

Currently structs on the wire

Add abstraction. . .

. . . but still put the same structs on the wire

Then “pull out the tablecloth”!

Well defined protocol, using XDR (or similar)

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol(s)? . . .

The database daemon needs to be high performance

Other daemons don’t

Quick prototyping?

RESTful API?

JSON?

Python?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol(s)? . . .

The database daemon needs to be high performance

Other daemons don’t

Quick prototyping?

RESTful API?

JSON?

Python?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol(s)? . . .

The database daemon needs to be high performance

Other daemons don’t

Quick prototyping?

RESTful API?

JSON?

Python?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol(s)? . . .

The database daemon needs to be high performance

Other daemons don’t

Quick prototyping?

RESTful API?

JSON?

Python?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol(s)? . . .

The database daemon needs to be high performance

Other daemons don’t

Quick prototyping?

RESTful API?

JSON?

Python?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol(s)? . . .

The database daemon needs to be high performance

Other daemons don’t

Quick prototyping?

RESTful API?

JSON?

Python?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

Protocol(s)? . . .

The database daemon needs to be high performance

Other daemons don’t

Quick prototyping?

RESTful API?

JSON?

Python?

Martin Schwenke CTDB: Where to from here and how can we get there?



How do we get there?

What else?

Martin Schwenke CTDB: Where to from here and how can we get there?



Legal Statement

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM is a registered trademark of International Business
Machines Corporation in the United States and/or other
countries.

Linux is a registered trademark of Linus Torvalds.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

Martin Schwenke CTDB: Where to from here and how can we get there?



Questions?

Martin Schwenke CTDB: Where to from here and how can we get there?


