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Who am I?

● Software Engineer for 15+ years.

● Systems Programmer.

● Systems Engineer.

● Studied software process and release cycles at:

– TASC Inc.

– The MathWorks Inc.

– Red Hat Inc.

– None of these companies endorse this talk.
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Why Develop Software?

● Money?

● Enjoyment?

● Prestige?

● Gun to head?



  4 / 41

Why Release Software?

● Commercial

– Don't!  (Works for Google Mail and Search!)

– For the money!  (Works for MathWorks!)

● Open Source

– ????

– For the “users”?

– For the developers?
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Open Source – Reasons.

● Help the planet.

● Tell the planet about our wonderful software.

● Hope someone will buy our little start-up for money.

● Buzzword compliant.

● Fairness.

● Freedom.

● Many, many, real reasons…..
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When to Release Software?

● When it benefits the people “developing” it.

– Call these people the stakeholders.

● What about the users?

– Without the stakeholders, there IS no software.

– There is nothing to release!

● Obvious, but critical insight.
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The Lifecycle of a Release

● Development.

● The typical “Glideslope”.

– Feature Freeze.

– Code Freeze.

– Release.

● Maintenance?! - Yes, it matters!

● End of maintenance.
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Development.

● Developers do what they do.

– Write code.

– Review code.

– Make things unstable^Wbetter!

– Run amuck!

● This is where feature development SHOULD be 
done.
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The “Glideslope”.

● Taken from flying.

● The goal is a smooth landing.
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Feature Freeze.

● Control hand-off from development to management.

● No more features after this date.

– Exceptions?
● I've never been somewhere there ISN'T!
● Or worked on a project that way.

● Bug fixes go in without questions in this phase.

● Minor improvements MAY be taken.

– Always be suspicious…  There be dragons!
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See… I warned you.

By Antonella Nigro (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
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Code Freeze.

● No changes without written exceptions.

● Exceptions == Day for Day slip on the issue.

– Just a bug is NOT enough to get in.

– “It is only a small change.”

– “It's almost done!”

● Only critical fixes should be made at this point.

● Changes at this point are VERY dangerous.

– There be more dragons here!
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I told you…

By Antonella Nigro (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
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How to Train Your Dragons.

● Don't have any?!

– Not very realistic.

● Put strong conditions on waivers.

– Any waiver should be tracked!

– Is it REALLY a day for day slip?

– Discipline is needed here!
● May need to be done by committee?
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Glideslope Exit?
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Policies You Need.

● What about late security issues?

● Late breaking data corruption issues?

● Late severe regressions?

● IMHO: 

– Decide based on what it is.
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Release!

● Ask Karolin.

● She'll explain it better than I ever could!
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Maintenance?

● Each branch has a set of policies that govern it.

● Nobody says they have to be the same!

● Should they be?

● Depends… who is maintaining them, and why.

– Those who drive the maintenance, decide policy!
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When to Release?

● Think about why we release…

● To benefit the “stakeholders”.

● So shouldn't release timing benefit those people?

● Some policies I've seen….
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End of Maintenance

● This is a touchy issue.

● This may be a “shade of grey”.

– No more “feature” backports.

– No more “security” backports.

● We need to know who cares!

– Plus, who pays.
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What We Do Today.

● ~10-11 month full cycle.

● 9 months of Development.

● 1-2 months of Feature Freeze.

● 1 week of Code Freeze.

● Maintain 3 releases concurrently.

– 1 with some back ports.

– 2 with security back ports.
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We've Got Dragons!

By Antonella Nigro (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
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Today's Dragons.

● “I need to complete this feature.”

– Release slips 2-3 months.

– Some needed that release sooner!

● No real control of the dragons.

– They run wild!
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Problems?

● Clearly this results in about a release a year.

● No real time in Feature Freeze.

● No time at ALL in Code Freeze for the release.

● These things really hurt quality.
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Benefits.

● We know what we do today.

● We actually have done this!

● It has worked for three years.

– Do not knock this fact.
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4-6 Month Cycle.

● Development is between the rest of the cycle.

● ~1-2 months for Feature Freeze. (Beta)

● ~1-2 months for Code Freeze. (RC)

● Hard stop on the time lines.

– No dragons!
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Surprise!

By Antonella Nigro (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons



  28 / 41

There Be Dragons.

● 4-6 months is a LONG time to not get a feature to 
the field.

● Some developers may be stuck forking on major 
features.

– Look at how aggressively Red Hat backports 
kernel patches…

● Red Hat does make our Samba versions 
available via git on git.samba.org from asn.

– Probably not what we want for our community.
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How to Train Your Dragons 2.

● We need to acknowledge the needs of our 
stakeholders.

● Exceptions are part of life in this type of cycle.

● Control them.

– Train your dragons.

– Yes, we may need a dragon tamer…
● Or do we do it by committee?
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Benefits.

● It is better than today.

● It meets the needs of at least one stakeholder 
better.

● Can we do better?
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Linux Kernel

● Releases are ~6-8 weeks.

● Branches beyond 2-3 back are NOT maintained.

– Anything older is basically kept up by a distro.

● ~2-4 weeks of Development.

● ~2 weeks of Feature Freeze.

● The rest is Code Freeze.
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Problems?

● Fast release pace may confuse people.

● Do releases have a real meaning?

● What is a “stable” release?

● We don't have a “Linus.”

– Can we do it by committee?
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Benefits.

● Fast release pace.  Code gets to the field fast!

– RC's can be as fast as 2 weeks!

● Those willing to maintain decide what to maintain.

– Not the “main line” developer's problem.

– Well, it is… but we'll be paid for it.
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9-12 Month Release Cycle.

● I won't pretend to like this.

– Need more field feedback.

– If we had stronger QA, we might get away with it.

– Some developers need more frequent feature 
drops.

● They'll PAY for it.

● It just doesn't meet our needs, and we know it!
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Feature Based Release.

● There's a key set of features that must be done.

● Decide on the features.

● Don't ship until they are done.
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Benefits.

● Features are what drive releases.

– There's always a feature for a release!

● Features always make the release.
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Disadvantages.

● What if a feature slips?

● What if a feature never ships?

● What if a feature's developer won't admit it slips?

– Yes, this happens.

● Feature based release, is something to be wary of.

– But it can work, at times.
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Other Plans?

● I welcome you to come up with plans!

● But understand the constraints.

– Who is paying for it?

– Who will work with it?

– Who are the “stakeholders”?

– Why does it meet our needs?
● I welcome discussions today, and tomorrow!

– On samba-technical once we are closer.

– Please not until we ARE closer.
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Remember.

● Most software ships late.

● Many projects never ship at all.

● Figuring out what is going when, is a true art.

– That's why there be dragons!

● Our goal is to meet our stakeholder's needs!
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Questions?

By Antonella Nigro (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
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Thanks for Attending!

By Antonella Nigro (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
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