
CTDB Stories

Amitay Isaacs
amitay@samba.org

Samba Team
IBM (Australia Development Labs, Linux Technology Center)

Amitay Isaacs CTDB Stories



CTDB Project

Motivation: Support for clustered Samba

Multiple nodes active simultaneously

Communication between nodes (heartbeat, failover)

Share databases between nodes

Features:

Volatile and Persistent databases

IP failover and load balancing

Service monitoring

Community:

http://ctdb.samba.org

git://git.samba.org/ctdb.git,
git://git.samba.org/samba.git

Amitay Isaacs CTDB Stories



Headlines

Merging CTDB tree in Samba tree

Development Stories

High hopcount bug
Getting lock scheduling right
All nodes banned on single node failure

Regression Stories

Real time or not
Fixing compiler warnings

Amitay Isaacs CTDB Stories



Story of the Merge

SambaXP 2013

Merge CTDB in Samba tree?

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process

Attract more developers

Nov 2013

CTDB tree merged with Samba

SambaXP 2014

To Do

Create waf build for CTDB, Clustered Samba
Setting up clustered samba instance for autobuild
Split monolithic code

Amitay Isaacs CTDB Stories



Story of the Merge

SambaXP 2013

Merge CTDB in Samba tree?

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process

Attract more developers

Nov 2013

CTDB tree merged with Samba

SambaXP 2014

To Do

Create waf build for CTDB, Clustered Samba
Setting up clustered samba instance for autobuild
Split monolithic code

Amitay Isaacs CTDB Stories



Story of the Merge

SambaXP 2013

Merge CTDB in Samba tree?

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process
Attract more developers

Nov 2013

CTDB tree merged with Samba

SambaXP 2014

To Do

Create waf build for CTDB, Clustered Samba
Setting up clustered samba instance for autobuild
Split monolithic code

Amitay Isaacs CTDB Stories



Story of the Merge

SambaXP 2013

Merge CTDB in Samba tree?

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process
Attract more developers

Nov 2013

CTDB tree merged with Samba

SambaXP 2014

To Do

Create waf build for CTDB, Clustered Samba
Setting up clustered samba instance for autobuild
Split monolithic code

Amitay Isaacs CTDB Stories



Story of the Merge

SambaXP 2013

Merge CTDB in Samba tree?

Remove duplication of talloc, tdb, tevent, replace libraries
Autobuild testing of clustered Samba
Leverage off Samba release process
Attract more developers

Nov 2013

CTDB tree merged with Samba

SambaXP 2014

To Do

Create waf build for CTDB, Clustered Samba
Setting up clustered samba instance for autobuild
Split monolithic code

Amitay Isaacs CTDB Stories



Story of the Merge

Step 1

Convert CTDB autoconf build to waf build

Finished implementation before reaching Australia

Step 2

Integrate CTDB build into toplevel build

lib/util has diverged
Can’t get rid of ctdb/lib/util
Start hacking lib/util

Gave up! Too long for a plane trip.

June 2014

CTDB standalone waf build commited.

Amitay Isaacs CTDB Stories



Story of the Merge

Step 1

Convert CTDB autoconf build to waf build

Finished implementation before reaching Australia

Step 2

Integrate CTDB build into toplevel build

lib/util has diverged
Can’t get rid of ctdb/lib/util
Start hacking lib/util

Gave up! Too long for a plane trip.

June 2014

CTDB standalone waf build commited.

Amitay Isaacs CTDB Stories



Story of the Merge

Step 1

Convert CTDB autoconf build to waf build

Finished implementation before reaching Australia

Step 2

Integrate CTDB build into toplevel build

lib/util has diverged
Can’t get rid of ctdb/lib/util
Start hacking lib/util

Gave up! Too long for a plane trip.

June 2014

CTDB standalone waf build commited.

Amitay Isaacs CTDB Stories



Story of the Merge

Step 1

Convert CTDB autoconf build to waf build

Finished implementation before reaching Australia

Step 2

Integrate CTDB build into toplevel build

lib/util has diverged
Can’t get rid of ctdb/lib/util
Start hacking lib/util

Gave up! Too long for a plane trip.

June 2014

CTDB standalone waf build commited.

Amitay Isaacs CTDB Stories



Story of the Merge

Step 1

Convert CTDB autoconf build to waf build

Finished implementation before reaching Australia

Step 2

Integrate CTDB build into toplevel build

lib/util has diverged

Can’t get rid of ctdb/lib/util
Start hacking lib/util

Gave up! Too long for a plane trip.

June 2014

CTDB standalone waf build commited.

Amitay Isaacs CTDB Stories



Story of the Merge

Step 1

Convert CTDB autoconf build to waf build

Finished implementation before reaching Australia

Step 2

Integrate CTDB build into toplevel build

lib/util has diverged
Can’t get rid of ctdb/lib/util

Start hacking lib/util

Gave up! Too long for a plane trip.

June 2014

CTDB standalone waf build commited.

Amitay Isaacs CTDB Stories



Story of the Merge

Step 1

Convert CTDB autoconf build to waf build

Finished implementation before reaching Australia

Step 2

Integrate CTDB build into toplevel build

lib/util has diverged
Can’t get rid of ctdb/lib/util
Start hacking lib/util

Gave up! Too long for a plane trip.

June 2014

CTDB standalone waf build commited.

Amitay Isaacs CTDB Stories



Story of the Merge

Step 1

Convert CTDB autoconf build to waf build

Finished implementation before reaching Australia

Step 2

Integrate CTDB build into toplevel build

lib/util has diverged
Can’t get rid of ctdb/lib/util
Start hacking lib/util

Gave up! Too long for a plane trip.

June 2014

CTDB standalone waf build commited.

Amitay Isaacs CTDB Stories



Story of the Merge

Step 1

Convert CTDB autoconf build to waf build

Finished implementation before reaching Australia

Step 2

Integrate CTDB build into toplevel build

lib/util has diverged
Can’t get rid of ctdb/lib/util
Start hacking lib/util

Gave up! Too long for a plane trip.

June 2014

CTDB standalone waf build commited.

Amitay Isaacs CTDB Stories



Story of the Merge

Martin takes over

Remove dependency on includes.h

Untangle functions & dependencies . . .

idtree.c depends on lib/crypto

util.c depends on charset

Factor out samba-util-core from samba-util to avoid
pulling in non-library code.

Clean up ctdb/lib/util

Clean up CTDB logging

Create new subsystem ctdb-util

Drop CTDB log ringbuffer, adopt lib/util/debug.[ch]

Replace dependency on ctdb-util with samba-util

Hook CTDB into top level using --with-cluster-support

Amitay Isaacs CTDB Stories



Story of the Merge

Martin takes over

Remove dependency on includes.h

Untangle functions & dependencies . . .

idtree.c depends on lib/crypto

util.c depends on charset

Factor out samba-util-core from samba-util to avoid
pulling in non-library code.

Clean up ctdb/lib/util

Clean up CTDB logging

Create new subsystem ctdb-util

Drop CTDB log ringbuffer, adopt lib/util/debug.[ch]

Replace dependency on ctdb-util with samba-util

Hook CTDB into top level using --with-cluster-support

Amitay Isaacs CTDB Stories



Story of the Merge

Martin takes over

Remove dependency on includes.h

Untangle functions & dependencies . . .

idtree.c depends on lib/crypto

util.c depends on charset

Factor out samba-util-core from samba-util to avoid
pulling in non-library code.

Clean up ctdb/lib/util

Clean up CTDB logging

Create new subsystem ctdb-util

Drop CTDB log ringbuffer, adopt lib/util/debug.[ch]

Replace dependency on ctdb-util with samba-util

Hook CTDB into top level using --with-cluster-support

Amitay Isaacs CTDB Stories



Story of the Merge

Martin takes over

Remove dependency on includes.h

Untangle functions & dependencies . . .

idtree.c depends on lib/crypto

util.c depends on charset

Factor out samba-util-core from samba-util to avoid
pulling in non-library code.

Clean up ctdb/lib/util

Clean up CTDB logging

Create new subsystem ctdb-util

Drop CTDB log ringbuffer, adopt lib/util/debug.[ch]

Replace dependency on ctdb-util with samba-util

Hook CTDB into top level using --with-cluster-support

Amitay Isaacs CTDB Stories



Story of the Merge

Martin takes over

Remove dependency on includes.h

Untangle functions & dependencies . . .

idtree.c depends on lib/crypto

util.c depends on charset

Factor out samba-util-core from samba-util to avoid
pulling in non-library code.

Clean up ctdb/lib/util

Clean up CTDB logging

Create new subsystem ctdb-util

Drop CTDB log ringbuffer, adopt lib/util/debug.[ch]

Replace dependency on ctdb-util with samba-util

Hook CTDB into top level using --with-cluster-support

Amitay Isaacs CTDB Stories



Story of the Merge

Martin takes over

Remove dependency on includes.h

Untangle functions & dependencies . . .

idtree.c depends on lib/crypto

util.c depends on charset

Factor out samba-util-core from samba-util to avoid
pulling in non-library code.

Clean up ctdb/lib/util

Clean up CTDB logging

Create new subsystem ctdb-util

Drop CTDB log ringbuffer, adopt lib/util/debug.[ch]

Replace dependency on ctdb-util with samba-util

Hook CTDB into top level using --with-cluster-support

Amitay Isaacs CTDB Stories



Story of the Merge

Martin takes over

Remove dependency on includes.h

Untangle functions & dependencies . . .

idtree.c depends on lib/crypto

util.c depends on charset

Factor out samba-util-core from samba-util to avoid
pulling in non-library code.

Clean up ctdb/lib/util

Clean up CTDB logging

Create new subsystem ctdb-util

Drop CTDB log ringbuffer, adopt lib/util/debug.[ch]

Replace dependency on ctdb-util with samba-util

Hook CTDB into top level using --with-cluster-support

Amitay Isaacs CTDB Stories



Story of the Merge

Martin takes over

Remove dependency on includes.h

Untangle functions & dependencies . . .

idtree.c depends on lib/crypto

util.c depends on charset

Factor out samba-util-core from samba-util to avoid
pulling in non-library code.

Clean up ctdb/lib/util

Clean up CTDB logging

Create new subsystem ctdb-util

Drop CTDB log ringbuffer, adopt lib/util/debug.[ch]

Replace dependency on ctdb-util with samba-util

Hook CTDB into top level using --with-cluster-support

Amitay Isaacs CTDB Stories



Story of the Merge

Martin takes over

Remove dependency on includes.h

Untangle functions & dependencies . . .

idtree.c depends on lib/crypto

util.c depends on charset

Factor out samba-util-core from samba-util to avoid
pulling in non-library code.

Clean up ctdb/lib/util

Clean up CTDB logging

Create new subsystem ctdb-util

Drop CTDB log ringbuffer, adopt lib/util/debug.[ch]

Replace dependency on ctdb-util with samba-util

Hook CTDB into top level using --with-cluster-support

Amitay Isaacs CTDB Stories



Story of the Merge

Martin takes over

Remove dependency on includes.h

Untangle functions & dependencies . . .

idtree.c depends on lib/crypto

util.c depends on charset

Factor out samba-util-core from samba-util to avoid
pulling in non-library code.

Clean up ctdb/lib/util

Clean up CTDB logging

Create new subsystem ctdb-util

Drop CTDB log ringbuffer, adopt lib/util/debug.[ch]

Replace dependency on ctdb-util with samba-util

Hook CTDB into top level using --with-cluster-support

Amitay Isaacs CTDB Stories



Story of the Merge

Martin takes over

Remove dependency on includes.h

Untangle functions & dependencies . . .

idtree.c depends on lib/crypto

util.c depends on charset

Factor out samba-util-core from samba-util to avoid
pulling in non-library code.

Clean up ctdb/lib/util

Clean up CTDB logging

Create new subsystem ctdb-util

Drop CTDB log ringbuffer, adopt lib/util/debug.[ch]

Replace dependency on ctdb-util with samba-util

Hook CTDB into top level using --with-cluster-support

Amitay Isaacs CTDB Stories



Story of the Merge

November 2014

CTDB build integrated into toplevel build.

Amitay Isaacs CTDB Stories



Story of the Merge

November 2014

CTDB build integrated into toplevel build.

Amitay Isaacs CTDB Stories



CTDB Releases

2.5.4 (September 2014) - 156 patches

Support for TDB robust mutexes
Add ctdb detach
Avoid running ctdb helpers at real-time priority
Improved vacuuming performance

2.5.5 (April 2015) - 119 patches

Fix handling of IPv6 addresses
Fix regression in socket handling code
Make statd-callout scalable

Amitay Isaacs CTDB Stories



Developers

Contributions in 2014

196 Martin Schwenke
184 Amitay Isaacs

55 Michael Adam
10 Volker Lendecke

3 Srikrishan Malik
3 Andrew Bartlett
2 Stefan Metzmacher
2 Gregor Beck
2 Bjorn Baumbach
1 Matthias Dieter Wallnofer
1 Jeremy Allison
1 Ira Cooper
1 David Disseldorp

Amitay Isaacs CTDB Stories



Developers

Contributions since Jan 2015

118 Martin Schwenke
15 Amitay Isaacs
12 Volker Lendecke

3 Rajesh Joseph
1 Michael Adam
1 Led
1 Jelmer Vernooij
1 David Disseldorp
1 Christof Schmitt

Amitay Isaacs CTDB Stories



High hopcount bug

Problem

Logs filled with entries like:
ctdbd: High hopcount 2823099 dbid:0x7a19d84d key:0x6f9f65c4

static void ctdb_call_send_redirect(ctdb, ctdb_db, key, c, header)

{

uint32_t lmaster = ctdb_lmaster(ctdb, &key);

c->hdr.destnode = lmaster;

if (ctdb->pnn == lmaster) {

c->hdr.destnode = header->dmaster;

}

c->hopcount++;

if (c->hopcount%100 > 95) {

DEBUG(DEBUG_WARNING,("High hopcount ..."));

}

ctdb_queue_packet(ctdb, &c->hdr);

}

Amitay Isaacs CTDB Stories



High hopcount bug

Problem

Logs filled with entries like:
ctdbd: High hopcount 2823099 dbid:0x7a19d84d key:0x6f9f65c4

static void ctdb_call_send_redirect(ctdb, ctdb_db, key, c, header)

{

uint32_t lmaster = ctdb_lmaster(ctdb, &key);

c->hdr.destnode = lmaster;

if (ctdb->pnn == lmaster) {

c->hdr.destnode = header->dmaster;

}

c->hopcount++;

if (c->hopcount%100 > 95) {

DEBUG(DEBUG_WARNING,("High hopcount ..."));

}

ctdb_queue_packet(ctdb, &c->hdr);

}

Amitay Isaacs CTDB Stories



High hopcount bug

Problem

Logs filled with entries like:
ctdbd: High hopcount 2823099 dbid:0x7a19d84d key:0x6f9f65c4

static void ctdb_call_send_redirect(ctdb, ctdb_db, key, c, header)

{

uint32_t lmaster = ctdb_lmaster(ctdb, &key);

c->hdr.destnode = lmaster;

if (ctdb->pnn == lmaster) {

c->hdr.destnode = header->dmaster;

}

c->hopcount++;

if (c->hopcount%100 > 95) {

DEBUG(DEBUG_WARNING,("High hopcount ..."));

}

ctdb_queue_packet(ctdb, &c->hdr);

}

Amitay Isaacs CTDB Stories



High hopcount bug

Record Migration

Record: Node 1 is LMASTER, Node 2 is DMASTER

Request for record received on Node 0 (REQ CALL)

Request redirected to Node 1 (REQ CALL)

Request redirected to Node 2 (REQ CALL)

Reply to Node 1 (DMASTER REQ)

Reply to Node 0 (DMASTER REPLY)

Reply to Client (REPLY CALL)

Amitay Isaacs CTDB Stories



High hopcount bug

Record Migration

Record: Node 1 is LMASTER, Node 2 is DMASTER

Request for record received on Node 0 (REQ CALL)

Request redirected to Node 1 (REQ CALL)

Request redirected to Node 2 (REQ CALL)

Reply to Node 1 (DMASTER REQ)

Reply to Node 0 (DMASTER REPLY)

Reply to Client (REPLY CALL)

Amitay Isaacs CTDB Stories



High hopcount bug

Record Migration

Record: Node 1 is LMASTER, Node 2 is DMASTER

Request for record received on Node 0 (REQ CALL)

Request redirected to Node 1 (REQ CALL)

Request redirected to Node 2 (REQ CALL)

Reply to Node 1 (DMASTER REQ)

Reply to Node 0 (DMASTER REPLY)

Reply to Client (REPLY CALL)

Amitay Isaacs CTDB Stories



High hopcount bug

Record Migration

Record: Node 1 is LMASTER, Node 2 is DMASTER

Request for record received on Node 0 (REQ CALL)

Request redirected to Node 1 (REQ CALL)

Request redirected to Node 2 (REQ CALL)

Reply to Node 1 (DMASTER REQ)

Reply to Node 0 (DMASTER REPLY)

Reply to Client (REPLY CALL)

Amitay Isaacs CTDB Stories



High hopcount bug

Record Migration

Record: Node 1 is LMASTER, Node 2 is DMASTER

Request for record received on Node 0 (REQ CALL)

Request redirected to Node 1 (REQ CALL)

Request redirected to Node 2 (REQ CALL)

Reply to Node 1 (DMASTER REQ)

Reply to Node 0 (DMASTER REPLY)

Reply to Client (REPLY CALL)

Amitay Isaacs CTDB Stories



High hopcount bug

Record Migration

Record: Node 1 is LMASTER, Node 2 is DMASTER

Request for record received on Node 0 (REQ CALL)

Request redirected to Node 1 (REQ CALL)

Request redirected to Node 2 (REQ CALL)

Reply to Node 1 (DMASTER REQ)

Reply to Node 0 (DMASTER REPLY)

Reply to Client (REPLY CALL)

Amitay Isaacs CTDB Stories



High hopcount bug

Record Migration

Record: Node 1 is LMASTER, Node 2 is DMASTER

Request for record received on Node 0 (REQ CALL)

Request redirected to Node 1 (REQ CALL)

Request redirected to Node 2 (REQ CALL)

Reply to Node 1 (DMASTER REQ)

Reply to Node 0 (DMASTER REPLY)

Reply to Client (REPLY CALL)

Amitay Isaacs CTDB Stories



High hopcount bug

Debugging

Noticed after fixes for vacuuming/recovery interaction bug

The problem was hard to reproduce

Many times the problem resolved itself

Suspects

Two requests chasing each-other

Record header corruption

Fixes for vaccuming/recovery interaction bug

Did identify few issues in the fixes
However, the problem did not go away

Locking code was being modified

Amitay Isaacs CTDB Stories



High hopcount bug

Debugging

Noticed after fixes for vacuuming/recovery interaction bug

The problem was hard to reproduce

Many times the problem resolved itself

Suspects

Two requests chasing each-other

Record header corruption

Fixes for vaccuming/recovery interaction bug

Did identify few issues in the fixes
However, the problem did not go away

Locking code was being modified

Amitay Isaacs CTDB Stories



High hopcount bug

Debugging

Noticed after fixes for vacuuming/recovery interaction bug

The problem was hard to reproduce

Many times the problem resolved itself

Suspects

Two requests chasing each-other

Record header corruption

Fixes for vaccuming/recovery interaction bug

Did identify few issues in the fixes
However, the problem did not go away

Locking code was being modified

Amitay Isaacs CTDB Stories



High hopcount bug

Debugging

Noticed after fixes for vacuuming/recovery interaction bug

The problem was hard to reproduce

Many times the problem resolved itself

Suspects

Two requests chasing each-other

Record header corruption

Fixes for vaccuming/recovery interaction bug

Did identify few issues in the fixes
However, the problem did not go away

Locking code was being modified

Amitay Isaacs CTDB Stories



High hopcount bug

Debugging

Noticed after fixes for vacuuming/recovery interaction bug

The problem was hard to reproduce

Many times the problem resolved itself

Suspects

Two requests chasing each-other

Record header corruption

Fixes for vaccuming/recovery interaction bug

Did identify few issues in the fixes
However, the problem did not go away

Locking code was being modified

Amitay Isaacs CTDB Stories



High hopcount bug

Debugging

Noticed after fixes for vacuuming/recovery interaction bug

The problem was hard to reproduce

Many times the problem resolved itself

Suspects

Two requests chasing each-other

Record header corruption

Fixes for vaccuming/recovery interaction bug

Did identify few issues in the fixes
However, the problem did not go away

Locking code was being modified

Amitay Isaacs CTDB Stories



High hopcount bug

Debugging

Noticed after fixes for vacuuming/recovery interaction bug

The problem was hard to reproduce

Many times the problem resolved itself

Suspects

Two requests chasing each-other

Record header corruption

Fixes for vaccuming/recovery interaction bug

Did identify few issues in the fixes
However, the problem did not go away

Locking code was being modified

Amitay Isaacs CTDB Stories



High hopcount bug

Debugging

Noticed after fixes for vacuuming/recovery interaction bug

The problem was hard to reproduce

Many times the problem resolved itself

Suspects

Two requests chasing each-other

Record header corruption

Fixes for vaccuming/recovery interaction bug

Did identify few issues in the fixes

However, the problem did not go away

Locking code was being modified

Amitay Isaacs CTDB Stories



High hopcount bug

Debugging

Noticed after fixes for vacuuming/recovery interaction bug

The problem was hard to reproduce

Many times the problem resolved itself

Suspects

Two requests chasing each-other

Record header corruption

Fixes for vaccuming/recovery interaction bug

Did identify few issues in the fixes
However, the problem did not go away

Locking code was being modified

Amitay Isaacs CTDB Stories



High hopcount bug

Debugging

Noticed after fixes for vacuuming/recovery interaction bug

The problem was hard to reproduce

Many times the problem resolved itself

Suspects

Two requests chasing each-other

Record header corruption

Fixes for vaccuming/recovery interaction bug

Did identify few issues in the fixes
However, the problem did not go away

Locking code was being modified

Amitay Isaacs CTDB Stories



High hopcount bug

Instrument record request processing code

Node 1 is the DMASTER for a record (hash 0x0aa13d47)

Record is getting updated regularly on Node 1

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9620] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9621] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9622] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9623] dmaster[1]

Node 0 requests the record. Node 1 updates DMASTER.

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9640] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[0]

And Node 1 migrates the record to Node 0

On Node 0 CTDB tries to grab the record lock

Cannot get a lock in non-blocking mode
Creates a lock request

Amitay Isaacs CTDB Stories



High hopcount bug

Instrument record request processing code

Node 1 is the DMASTER for a record (hash 0x0aa13d47)

Record is getting updated regularly on Node 1

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9620] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9621] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9622] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9623] dmaster[1]

Node 0 requests the record. Node 1 updates DMASTER.

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9640] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[0]

And Node 1 migrates the record to Node 0

On Node 0 CTDB tries to grab the record lock

Cannot get a lock in non-blocking mode
Creates a lock request

Amitay Isaacs CTDB Stories



High hopcount bug

Instrument record request processing code

Node 1 is the DMASTER for a record (hash 0x0aa13d47)

Record is getting updated regularly on Node 1

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9620] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9621] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9622] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9623] dmaster[1]

Node 0 requests the record. Node 1 updates DMASTER.

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9640] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[0]

And Node 1 migrates the record to Node 0

On Node 0 CTDB tries to grab the record lock

Cannot get a lock in non-blocking mode
Creates a lock request

Amitay Isaacs CTDB Stories



High hopcount bug

Instrument record request processing code

Node 1 is the DMASTER for a record (hash 0x0aa13d47)

Record is getting updated regularly on Node 1

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9620] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9621] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9622] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9623] dmaster[1]

Node 0 requests the record. Node 1 updates DMASTER.

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9640] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[0]

And Node 1 migrates the record to Node 0

On Node 0 CTDB tries to grab the record lock

Cannot get a lock in non-blocking mode
Creates a lock request

Amitay Isaacs CTDB Stories



High hopcount bug

Instrument record request processing code

Node 1 is the DMASTER for a record (hash 0x0aa13d47)

Record is getting updated regularly on Node 1

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9620] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9621] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9622] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9623] dmaster[1]

Node 0 requests the record. Node 1 updates DMASTER.

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9640] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[0]

And Node 1 migrates the record to Node 0

On Node 0 CTDB tries to grab the record lock

Cannot get a lock in non-blocking mode
Creates a lock request

Amitay Isaacs CTDB Stories



High hopcount bug

Instrument record request processing code

Node 1 is the DMASTER for a record (hash 0x0aa13d47)

Record is getting updated regularly on Node 1

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9620] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9621] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9622] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9623] dmaster[1]

Node 0 requests the record. Node 1 updates DMASTER.

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9640] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[0]

And Node 1 migrates the record to Node 0

On Node 0 CTDB tries to grab the record lock

Cannot get a lock in non-blocking mode
Creates a lock request

Amitay Isaacs CTDB Stories



High hopcount bug

Instrument record request processing code

Node 1 is the DMASTER for a record (hash 0x0aa13d47)

Record is getting updated regularly on Node 1

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9620] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9621] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9622] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9623] dmaster[1]

Node 0 requests the record. Node 1 updates DMASTER.

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9640] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[0]

And Node 1 migrates the record to Node 0

On Node 0 CTDB tries to grab the record lock

Cannot get a lock in non-blocking mode
Creates a lock request

Amitay Isaacs CTDB Stories



High hopcount bug

Instrument record request processing code

Node 1 is the DMASTER for a record (hash 0x0aa13d47)

Record is getting updated regularly on Node 1

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9620] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9621] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9622] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9623] dmaster[1]

Node 0 requests the record. Node 1 updates DMASTER.

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9640] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[0]

And Node 1 migrates the record to Node 0

On Node 0 CTDB tries to grab the record lock

Cannot get a lock in non-blocking mode

Creates a lock request

Amitay Isaacs CTDB Stories



High hopcount bug

Instrument record request processing code

Node 1 is the DMASTER for a record (hash 0x0aa13d47)

Record is getting updated regularly on Node 1

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9620] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9621] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9622] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9623] dmaster[1]

Node 0 requests the record. Node 1 updates DMASTER.

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9640] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[1]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9641] dmaster[0]

And Node 1 migrates the record to Node 0

On Node 0 CTDB tries to grab the record lock

Cannot get a lock in non-blocking mode
Creates a lock request

Amitay Isaacs CTDB Stories



High hopcount bug

Meanwhile, more record requests queue up

Waiting reqid:732 key:0x0aa13d47

Waiting reqid:684 key:0x0aa13d47

Waiting reqid:715 key:0x0aa13d47

Waiting reqid:701 key:0x0aa13d47

Soon after high hopcount messages are logged on Node 0

High hopcount 97 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

High hopcount 99 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

High hopcount 196 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

High hopcount 198 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

These record requests bounce very quickly. After 2 seconds:

High hopcount 955596 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

High hopcount 955598 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

High hopcount 955597 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

High hopcount 955599 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

Amitay Isaacs CTDB Stories



High hopcount bug

Meanwhile, more record requests queue up

Waiting reqid:732 key:0x0aa13d47

Waiting reqid:684 key:0x0aa13d47

Waiting reqid:715 key:0x0aa13d47

Waiting reqid:701 key:0x0aa13d47

Soon after high hopcount messages are logged on Node 0

High hopcount 97 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

High hopcount 99 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

High hopcount 196 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

High hopcount 198 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

These record requests bounce very quickly. After 2 seconds:

High hopcount 955596 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

High hopcount 955598 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

High hopcount 955597 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

High hopcount 955599 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

Amitay Isaacs CTDB Stories



High hopcount bug

Meanwhile, more record requests queue up

Waiting reqid:732 key:0x0aa13d47

Waiting reqid:684 key:0x0aa13d47

Waiting reqid:715 key:0x0aa13d47

Waiting reqid:701 key:0x0aa13d47

Soon after high hopcount messages are logged on Node 0

High hopcount 97 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

High hopcount 99 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

High hopcount 196 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

High hopcount 198 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

These record requests bounce very quickly. After 2 seconds:

High hopcount 955596 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

High hopcount 955598 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

High hopcount 955597 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

High hopcount 955599 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

Amitay Isaacs CTDB Stories



High hopcount bug

Meanwhile, more record requests queue up

Waiting reqid:732 key:0x0aa13d47

Waiting reqid:684 key:0x0aa13d47

Waiting reqid:715 key:0x0aa13d47

Waiting reqid:701 key:0x0aa13d47

Soon after high hopcount messages are logged on Node 0

High hopcount 97 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

High hopcount 99 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

High hopcount 196 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

High hopcount 198 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

These record requests bounce very quickly. After 2 seconds:

High hopcount 955596 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

High hopcount 955598 key:0x0aa13d47 reqid=000039f9 pnn:0 src:0 lmaster:1

High hopcount 955597 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

High hopcount 955599 key:0x0aa13d47 reqid=00004771 pnn:0 src:1 lmaster:1

Amitay Isaacs CTDB Stories



High hopcount bug

Sometime later the migrated record request gets processed

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9642] dmaster[0]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9643] dmaster[0]

And the bouncing requests stop.

Temporary inconsistency during record migration

Node 0 says Node 1 is DMASTER
Node 1 says Node 0 is DMASTER

Solution

Avoid processing record requests for record in migration

Amitay Isaacs CTDB Stories



High hopcount bug

Sometime later the migrated record request gets processed

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9642] dmaster[0]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9643] dmaster[0]

And the bouncing requests stop.

Temporary inconsistency during record migration

Node 0 says Node 1 is DMASTER
Node 1 says Node 0 is DMASTER

Solution

Avoid processing record requests for record in migration

Amitay Isaacs CTDB Stories



High hopcount bug

Sometime later the migrated record request gets processed

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9642] dmaster[0]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9643] dmaster[0]

And the bouncing requests stop.

Temporary inconsistency during record migration

Node 0 says Node 1 is DMASTER
Node 1 says Node 0 is DMASTER

Solution

Avoid processing record requests for record in migration

Amitay Isaacs CTDB Stories



High hopcount bug

Sometime later the migrated record request gets processed

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9642] dmaster[0]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9643] dmaster[0]

And the bouncing requests stop.

Temporary inconsistency during record migration

Node 0 says Node 1 is DMASTER
Node 1 says Node 0 is DMASTER

Solution

Avoid processing record requests for record in migration

Amitay Isaacs CTDB Stories



High hopcount bug

Sometime later the migrated record request gets processed

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9642] dmaster[0]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9643] dmaster[0]

And the bouncing requests stop.

Temporary inconsistency during record migration

Node 0 says Node 1 is DMASTER
Node 1 says Node 0 is DMASTER

Solution

Avoid processing record requests for record in migration

Amitay Isaacs CTDB Stories



High hopcount bug

Sometime later the migrated record request gets processed

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9642] dmaster[0]

UPDATE db[notify_index.tdb]: store: hash[0x0aa13d47] rsn[9643] dmaster[0]

And the bouncing requests stop.

Temporary inconsistency during record migration

Node 0 says Node 1 is DMASTER
Node 1 says Node 0 is DMASTER

Solution

Avoid processing record requests for record in migration

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Locks in CTDB

Record locks

To modify a record, CTDB tries to grab non-blocking lock
If that fails, create a lock request

Database locks

For database recovery, CTDB needs to freeze all databases

Why lock scheduling

Multiple requests for different records

Multiple requests for same record

There are multiple databases

Freeze requests are handled independently

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Locks in CTDB

Record locks

To modify a record, CTDB tries to grab non-blocking lock
If that fails, create a lock request

Database locks

For database recovery, CTDB needs to freeze all databases

Why lock scheduling

Multiple requests for different records

Multiple requests for same record

There are multiple databases

Freeze requests are handled independently

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Locks in CTDB

Record locks

To modify a record, CTDB tries to grab non-blocking lock
If that fails, create a lock request

Database locks

For database recovery, CTDB needs to freeze all databases

Why lock scheduling

Multiple requests for different records

Multiple requests for same record

There are multiple databases

Freeze requests are handled independently

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Locks in CTDB

Record locks

To modify a record, CTDB tries to grab non-blocking lock
If that fails, create a lock request

Database locks

For database recovery, CTDB needs to freeze all databases

Why lock scheduling

Multiple requests for different records

Multiple requests for same record

There are multiple databases

Freeze requests are handled independently

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Locks in CTDB

Record locks

To modify a record, CTDB tries to grab non-blocking lock
If that fails, create a lock request

Database locks

For database recovery, CTDB needs to freeze all databases

Why lock scheduling

Multiple requests for different records

Multiple requests for same record

There are multiple databases

Freeze requests are handled independently

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Locks in CTDB

Record locks

To modify a record, CTDB tries to grab non-blocking lock
If that fails, create a lock request

Database locks

For database recovery, CTDB needs to freeze all databases

Why lock scheduling

Multiple requests for different records

Multiple requests for same record

There are multiple databases

Freeze requests are handled independently

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Locks in CTDB

Record locks

To modify a record, CTDB tries to grab non-blocking lock
If that fails, create a lock request

Database locks

For database recovery, CTDB needs to freeze all databases

Why lock scheduling

Multiple requests for different records

Multiple requests for same record

There are multiple databases

Freeze requests are handled independently

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Locks in CTDB

Record locks

To modify a record, CTDB tries to grab non-blocking lock
If that fails, create a lock request

Database locks

For database recovery, CTDB needs to freeze all databases

Why lock scheduling

Multiple requests for different records

Multiple requests for same record

There are multiple databases

Freeze requests are handled independently

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

New locking API abstaction - Naive approach

Same API for record lock request and database lock request

Queues for active and pending lock requests

Maximum number of active lock requests

Create a child process to lock the record

Mostly works . . .

Problem

. . . till database recovery is triggered under load

Solution

Active queue is full and freeze lock requests are pending

Freeze lock requests need to be scheduled immediately

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

New locking API abstaction - Naive approach

Same API for record lock request and database lock request

Queues for active and pending lock requests

Maximum number of active lock requests

Create a child process to lock the record

Mostly works . . .

Problem

. . . till database recovery is triggered under load

Solution

Active queue is full and freeze lock requests are pending

Freeze lock requests need to be scheduled immediately

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

New locking API abstaction - Naive approach

Same API for record lock request and database lock request

Queues for active and pending lock requests

Maximum number of active lock requests

Create a child process to lock the record

Mostly works . . .

Problem

. . . till database recovery is triggered under load

Solution

Active queue is full and freeze lock requests are pending

Freeze lock requests need to be scheduled immediately

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

New locking API abstaction - Naive approach

Same API for record lock request and database lock request

Queues for active and pending lock requests

Maximum number of active lock requests

Create a child process to lock the record

Mostly works . . .

Problem

. . . till database recovery is triggered under load

Solution

Active queue is full and freeze lock requests are pending

Freeze lock requests need to be scheduled immediately

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

New locking API abstaction - Naive approach

Same API for record lock request and database lock request

Queues for active and pending lock requests

Maximum number of active lock requests

Create a child process to lock the record

Mostly works . . .

Problem

. . . till database recovery is triggered under load

Solution

Active queue is full and freeze lock requests are pending

Freeze lock requests need to be scheduled immediately

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

New locking API abstaction - Naive approach

Same API for record lock request and database lock request

Queues for active and pending lock requests

Maximum number of active lock requests

Create a child process to lock the record

Mostly works . . .

Problem

. . . till database recovery is triggered under load

Solution

Active queue is full and freeze lock requests are pending

Freeze lock requests need to be scheduled immediately

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

New locking API abstaction - Naive approach

Same API for record lock request and database lock request

Queues for active and pending lock requests

Maximum number of active lock requests

Create a child process to lock the record

Mostly works . . .

Problem

. . . till database recovery is triggered under load

Solution

Active queue is full and freeze lock requests are pending

Freeze lock requests need to be scheduled immediately

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

New locking API abstaction - Naive approach

Same API for record lock request and database lock request

Queues for active and pending lock requests

Maximum number of active lock requests

Create a child process to lock the record

Mostly works . . .

Problem

. . . till database recovery is triggered under load

Solution

Active queue is full and freeze lock requests are pending

Freeze lock requests need to be scheduled immediately

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Problem

Performance is not good when record locking is in use

Solution

A single limit on active records kills performance for locking
requests across multiple databases

Implement per database limits for active lock requests

Problem

There are multiple lock processes waiting for the same record

Solution

Rely on kernel to do “fair scheduling”

Before scheduling a lock request, check if there is an active
lock request for the same record

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Problem

Performance is not good when record locking is in use

Solution

A single limit on active records kills performance for locking
requests across multiple databases

Implement per database limits for active lock requests

Problem

There are multiple lock processes waiting for the same record

Solution

Rely on kernel to do “fair scheduling”

Before scheduling a lock request, check if there is an active
lock request for the same record

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Problem

Performance is not good when record locking is in use

Solution

A single limit on active records kills performance for locking
requests across multiple databases

Implement per database limits for active lock requests

Problem

There are multiple lock processes waiting for the same record

Solution

Rely on kernel to do “fair scheduling”

Before scheduling a lock request, check if there is an active
lock request for the same record

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Problem

Performance is not good when record locking is in use

Solution

A single limit on active records kills performance for locking
requests across multiple databases

Implement per database limits for active lock requests

Problem

There are multiple lock processes waiting for the same record

Solution

Rely on kernel to do “fair scheduling”

Before scheduling a lock request, check if there is an active
lock request for the same record

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Problem

Performance is not good when record locking is in use

Solution

A single limit on active records kills performance for locking
requests across multiple databases

Implement per database limits for active lock requests

Problem

There are multiple lock processes waiting for the same record

Solution

Rely on kernel to do “fair scheduling”

Before scheduling a lock request, check if there is an active
lock request for the same record

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Problem

Performance is not good when record locking is in use

Solution

A single limit on active records kills performance for locking
requests across multiple databases

Implement per database limits for active lock requests

Problem

There are multiple lock processes waiting for the same record

Solution

Rely on kernel to do “fair scheduling”

Before scheduling a lock request, check if there is an active
lock request for the same record

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Problem

CTDB is consuming 100% CPU under heavy load

Solution

Active and pending lock queues are implemented as linked lists

CTDB is spinning trying to schedule next request
(60k requests in pending queue)

Undo active lock checking?

Implement per database queues, not sufficient!

Better Solution

Use better data structure for checking active lock requests

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Problem

CTDB is consuming 100% CPU under heavy load

Solution

Active and pending lock queues are implemented as linked lists

CTDB is spinning trying to schedule next request
(60k requests in pending queue)

Undo active lock checking?

Implement per database queues, not sufficient!

Better Solution

Use better data structure for checking active lock requests

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Problem

CTDB is consuming 100% CPU under heavy load

Solution

Active and pending lock queues are implemented as linked lists

CTDB is spinning trying to schedule next request
(60k requests in pending queue)

Undo active lock checking?

Implement per database queues, not sufficient!

Better Solution

Use better data structure for checking active lock requests

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Problem

CTDB is consuming 100% CPU under heavy load

Solution

Active and pending lock queues are implemented as linked lists

CTDB is spinning trying to schedule next request
(60k requests in pending queue)

Undo active lock checking?

Implement per database queues, not sufficient!

Better Solution

Use better data structure for checking active lock requests

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Problem

CTDB is consuming 100% CPU under heavy load

Solution

Active and pending lock queues are implemented as linked lists

CTDB is spinning trying to schedule next request
(60k requests in pending queue)

Undo active lock checking?

Implement per database queues, not sufficient!

Better Solution

Use better data structure for checking active lock requests

Amitay Isaacs CTDB Stories



Getting Lock Scheduling Right

Problem

CTDB is consuming 100% CPU under heavy load

Solution

Active and pending lock queues are implemented as linked lists

CTDB is spinning trying to schedule next request
(60k requests in pending queue)

Undo active lock checking?

Implement per database queues, not sufficient!

Better Solution

Use better data structure for checking active lock requests

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Observation

A node becomes INACTIVE (disconnected, stopped or
banned)

CTDB tries to freeze databases for recovery and fails

CTDB retries and bans culprit node

Eventually ends up banning all remaining nodes

If locking database fails, CTDB logs useful information

All processes holding locks on CTDB database
Stack traces for all those processes
Relies on parsing /proc/locks

Cannot be used with TDB robust mutexes

Recreate after disabling TDB robust mutexes

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Observation

A node becomes INACTIVE (disconnected, stopped or
banned)

CTDB tries to freeze databases for recovery and fails

CTDB retries and bans culprit node

Eventually ends up banning all remaining nodes

If locking database fails, CTDB logs useful information

All processes holding locks on CTDB database
Stack traces for all those processes
Relies on parsing /proc/locks

Cannot be used with TDB robust mutexes

Recreate after disabling TDB robust mutexes

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Observation

A node becomes INACTIVE (disconnected, stopped or
banned)

CTDB tries to freeze databases for recovery and fails

CTDB retries and bans culprit node

Eventually ends up banning all remaining nodes

If locking database fails, CTDB logs useful information

All processes holding locks on CTDB database
Stack traces for all those processes
Relies on parsing /proc/locks

Cannot be used with TDB robust mutexes

Recreate after disabling TDB robust mutexes

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Observation

A node becomes INACTIVE (disconnected, stopped or
banned)

CTDB tries to freeze databases for recovery and fails

CTDB retries and bans culprit node

Eventually ends up banning all remaining nodes

If locking database fails, CTDB logs useful information

All processes holding locks on CTDB database
Stack traces for all those processes
Relies on parsing /proc/locks

Cannot be used with TDB robust mutexes

Recreate after disabling TDB robust mutexes

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Observation

A node becomes INACTIVE (disconnected, stopped or
banned)

CTDB tries to freeze databases for recovery and fails

CTDB retries and bans culprit node

Eventually ends up banning all remaining nodes

If locking database fails, CTDB logs useful information

All processes holding locks on CTDB database
Stack traces for all those processes
Relies on parsing /proc/locks

Cannot be used with TDB robust mutexes

Recreate after disabling TDB robust mutexes

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Observation

A node becomes INACTIVE (disconnected, stopped or
banned)

CTDB tries to freeze databases for recovery and fails

CTDB retries and bans culprit node

Eventually ends up banning all remaining nodes

If locking database fails, CTDB logs useful information

All processes holding locks on CTDB database
Stack traces for all those processes
Relies on parsing /proc/locks

Cannot be used with TDB robust mutexes

Recreate after disabling TDB robust mutexes

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Observation

A node becomes INACTIVE (disconnected, stopped or
banned)

CTDB tries to freeze databases for recovery and fails

CTDB retries and bans culprit node

Eventually ends up banning all remaining nodes

If locking database fails, CTDB logs useful information

All processes holding locks on CTDB database
Stack traces for all those processes

Relies on parsing /proc/locks

Cannot be used with TDB robust mutexes

Recreate after disabling TDB robust mutexes

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Observation

A node becomes INACTIVE (disconnected, stopped or
banned)

CTDB tries to freeze databases for recovery and fails

CTDB retries and bans culprit node

Eventually ends up banning all remaining nodes

If locking database fails, CTDB logs useful information

All processes holding locks on CTDB database
Stack traces for all those processes
Relies on parsing /proc/locks

Cannot be used with TDB robust mutexes

Recreate after disabling TDB robust mutexes

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Observation

A node becomes INACTIVE (disconnected, stopped or
banned)

CTDB tries to freeze databases for recovery and fails

CTDB retries and bans culprit node

Eventually ends up banning all remaining nodes

If locking database fails, CTDB logs useful information

All processes holding locks on CTDB database
Stack traces for all those processes
Relies on parsing /proc/locks

Cannot be used with TDB robust mutexes

Recreate after disabling TDB robust mutexes

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Observation

A node becomes INACTIVE (disconnected, stopped or
banned)

CTDB tries to freeze databases for recovery and fails

CTDB retries and bans culprit node

Eventually ends up banning all remaining nodes

If locking database fails, CTDB logs useful information

All processes holding locks on CTDB database
Stack traces for all those processes
Relies on parsing /proc/locks

Cannot be used with TDB robust mutexes

Recreate after disabling TDB robust mutexes

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

CTDB fails to freeze smbXsrv session global.tdb

ctdbd-lock: /usr/bin/ctdb_lock_helper smbXsrv_session_global.tdb.0 168 223318

ctdbd-lock: /usr/bin/ctdb_lock_helper smbXsrv_tcon_global.tdb.0 168 EOF

ctdbd-lock: /usr/sbin/smbd smbXsrv_tcon_global.tdb.0 251880 251880 W

ctdbd-lock: /usr/bin/ctdb_lock_helper locking.tdb.0 168 EOF

ctdbd-lock: /usr/bin/ctdb_lock_helper smbXsrv_open_global.tdb.0 168 EOF

ctdbd-lock: /usr/bin/ctdb_lock_helper cnscm_monitoring.tdb.0 168 EOF

ctdbd-lock: /usr/sbin/smbd smbXsrv_session_global.tdb.0 223320 223320

Samba process is holding a lock

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

CTDB fails to freeze smbXsrv session global.tdb

ctdbd-lock: /usr/bin/ctdb_lock_helper smbXsrv_session_global.tdb.0 168 223318

ctdbd-lock: /usr/bin/ctdb_lock_helper smbXsrv_tcon_global.tdb.0 168 EOF

ctdbd-lock: /usr/sbin/smbd smbXsrv_tcon_global.tdb.0 251880 251880 W

ctdbd-lock: /usr/bin/ctdb_lock_helper locking.tdb.0 168 EOF

ctdbd-lock: /usr/bin/ctdb_lock_helper smbXsrv_open_global.tdb.0 168 EOF

ctdbd-lock: /usr/bin/ctdb_lock_helper cnscm_monitoring.tdb.0 168 EOF

ctdbd-lock: /usr/sbin/smbd smbXsrv_session_global.tdb.0 223320 223320

Samba process is holding a lock

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

CTDB fails to freeze smbXsrv session global.tdb

ctdbd-lock: /usr/bin/ctdb_lock_helper smbXsrv_session_global.tdb.0 168 223318

ctdbd-lock: /usr/bin/ctdb_lock_helper smbXsrv_tcon_global.tdb.0 168 EOF

ctdbd-lock: /usr/sbin/smbd smbXsrv_tcon_global.tdb.0 251880 251880 W

ctdbd-lock: /usr/bin/ctdb_lock_helper locking.tdb.0 168 EOF

ctdbd-lock: /usr/bin/ctdb_lock_helper smbXsrv_open_global.tdb.0 168 EOF

ctdbd-lock: /usr/bin/ctdb_lock_helper cnscm_monitoring.tdb.0 168 EOF

ctdbd-lock: /usr/sbin/smbd smbXsrv_session_global.tdb.0 223320 223320

Samba process is holding a lock

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Stack trace for relevant samba process

#0 0x00007fde05236218 in poll () from /lib64/libc.so.6

#1 0x00007fde0863a93c in poll_one_fd ()

#2 0x00007fde0861146b in ctdb_packet_fd_read_sync_timeout ()

#3 0x00007fde08611c0d in ctdb_packet_fd_read_sync ()

#4 0x00007fde086126fa in ctdb_read_req ()

#5 0x00007fde08612eae in ctdbd_parse ()

#6 0x00007fde0862184d in db_ctdb_parse_record ()

#7 0x00007fde0861d9d4 in dbwrap_parse_record ()

#8 0x00007fde0861dc2a in dbwrap_fetch ()

#9 0x00007fde086250fd in dbwrap_watch_record_stored ()

#10 0x00007fde0861dc86 in dbwrap_record_delete ()

#11 0x00007fde083887bd in smbXsrv_session_logoff ()

#12 0x00007fde083892aa in smbXsrv_session_logoff_all_callback ()

#13 0x00007fde08626389 in db_rbt_traverse_internal ()

#14 0x00007fde086264da in db_rbt_traverse ()

#15 0x00007fde0861d96a in dbwrap_traverse ()

#16 0x00007fde08389918 in smbXsrv_session_logoff_all ()

#17 0x00007fde088e41a0 in exit_server_common ()

#18 0x00007fde088e462e in smbd_exit_server_cleanly ()

#19 0x00007fde083609e2 in exit_server_cleanly ()

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Samba is holding a record lock
(smbXsrv_session_global.tdb)

And waiting for another record (dbwatchers.tdb)

CTDB is in the process of migrating the record

At this time CTDB on the remote node becomes INACTIVE

CTDB has to perform database recovery

CTDB starts to freeze databases

CTDB cannot lock smbXsrv_session_global.tdb

Deadlock!

Since CTDB cannot freeze databases, it will ban the culprit

Multiple Samba processes holding a lock on different nodes

All nodes get banned!

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Samba is holding a record lock
(smbXsrv_session_global.tdb)

And waiting for another record (dbwatchers.tdb)

CTDB is in the process of migrating the record

At this time CTDB on the remote node becomes INACTIVE

CTDB has to perform database recovery

CTDB starts to freeze databases

CTDB cannot lock smbXsrv_session_global.tdb

Deadlock!

Since CTDB cannot freeze databases, it will ban the culprit

Multiple Samba processes holding a lock on different nodes

All nodes get banned!

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Samba is holding a record lock
(smbXsrv_session_global.tdb)

And waiting for another record (dbwatchers.tdb)

CTDB is in the process of migrating the record

At this time CTDB on the remote node becomes INACTIVE

CTDB has to perform database recovery

CTDB starts to freeze databases

CTDB cannot lock smbXsrv_session_global.tdb

Deadlock!

Since CTDB cannot freeze databases, it will ban the culprit

Multiple Samba processes holding a lock on different nodes

All nodes get banned!

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Samba is holding a record lock
(smbXsrv_session_global.tdb)

And waiting for another record (dbwatchers.tdb)

CTDB is in the process of migrating the record

At this time CTDB on the remote node becomes INACTIVE

CTDB has to perform database recovery

CTDB starts to freeze databases

CTDB cannot lock smbXsrv_session_global.tdb

Deadlock!

Since CTDB cannot freeze databases, it will ban the culprit

Multiple Samba processes holding a lock on different nodes

All nodes get banned!

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Samba is holding a record lock
(smbXsrv_session_global.tdb)

And waiting for another record (dbwatchers.tdb)

CTDB is in the process of migrating the record

At this time CTDB on the remote node becomes INACTIVE

CTDB has to perform database recovery

CTDB starts to freeze databases

CTDB cannot lock smbXsrv_session_global.tdb

Deadlock!

Since CTDB cannot freeze databases, it will ban the culprit

Multiple Samba processes holding a lock on different nodes

All nodes get banned!

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Samba is holding a record lock
(smbXsrv_session_global.tdb)

And waiting for another record (dbwatchers.tdb)

CTDB is in the process of migrating the record

At this time CTDB on the remote node becomes INACTIVE

CTDB has to perform database recovery

CTDB starts to freeze databases

CTDB cannot lock smbXsrv_session_global.tdb

Deadlock!

Since CTDB cannot freeze databases, it will ban the culprit

Multiple Samba processes holding a lock on different nodes

All nodes get banned!

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Samba is holding a record lock
(smbXsrv_session_global.tdb)

And waiting for another record (dbwatchers.tdb)

CTDB is in the process of migrating the record

At this time CTDB on the remote node becomes INACTIVE

CTDB has to perform database recovery

CTDB starts to freeze databases

CTDB cannot lock smbXsrv_session_global.tdb

Deadlock!

Since CTDB cannot freeze databases, it will ban the culprit

Multiple Samba processes holding a lock on different nodes

All nodes get banned!

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Samba is holding a record lock
(smbXsrv_session_global.tdb)

And waiting for another record (dbwatchers.tdb)

CTDB is in the process of migrating the record

At this time CTDB on the remote node becomes INACTIVE

CTDB has to perform database recovery

CTDB starts to freeze databases

CTDB cannot lock smbXsrv_session_global.tdb

Deadlock!

Since CTDB cannot freeze databases, it will ban the culprit

Multiple Samba processes holding a lock on different nodes

All nodes get banned!

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Samba is holding a record lock
(smbXsrv_session_global.tdb)

And waiting for another record (dbwatchers.tdb)

CTDB is in the process of migrating the record

At this time CTDB on the remote node becomes INACTIVE

CTDB has to perform database recovery

CTDB starts to freeze databases

CTDB cannot lock smbXsrv_session_global.tdb

Deadlock!

Since CTDB cannot freeze databases, it will ban the culprit

Multiple Samba processes holding a lock on different nodes

All nodes get banned!

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Samba is holding a record lock
(smbXsrv_session_global.tdb)

And waiting for another record (dbwatchers.tdb)

CTDB is in the process of migrating the record

At this time CTDB on the remote node becomes INACTIVE

CTDB has to perform database recovery

CTDB starts to freeze databases

CTDB cannot lock smbXsrv_session_global.tdb

Deadlock!

Since CTDB cannot freeze databases, it will ban the culprit

Multiple Samba processes holding a lock on different nodes

All nodes get banned!

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Samba is holding a record lock
(smbXsrv_session_global.tdb)

And waiting for another record (dbwatchers.tdb)

CTDB is in the process of migrating the record

At this time CTDB on the remote node becomes INACTIVE

CTDB has to perform database recovery

CTDB starts to freeze databases

CTDB cannot lock smbXsrv_session_global.tdb

Deadlock!

Since CTDB cannot freeze databases, it will ban the culprit

Multiple Samba processes holding a lock on different nodes

All nodes get banned!

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Samba is holding a record lock
(smbXsrv_session_global.tdb)

And waiting for another record (dbwatchers.tdb)

CTDB is in the process of migrating the record

At this time CTDB on the remote node becomes INACTIVE

CTDB has to perform database recovery

CTDB starts to freeze databases

CTDB cannot lock smbXsrv_session_global.tdb

Deadlock!

Since CTDB cannot freeze databases, it will ban the culprit

Multiple Samba processes holding a lock on different nodes

All nodes get banned!

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Problem

CTDB cannot freeze database since Samba is holding a lock

Samba will not release a lock, till it gets the second lock

CTDB database recovery is serial

Freeze all databases
Recover databases one by one
Unlock all databases

Solution

Do database recovery in parallel

Start freeze of all databases
As soon as database is frozen, recover database
Process all pending call requests for that database

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Problem

CTDB cannot freeze database since Samba is holding a lock

Samba will not release a lock, till it gets the second lock

CTDB database recovery is serial

Freeze all databases
Recover databases one by one
Unlock all databases

Solution

Do database recovery in parallel

Start freeze of all databases
As soon as database is frozen, recover database
Process all pending call requests for that database

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Problem

CTDB cannot freeze database since Samba is holding a lock

Samba will not release a lock, till it gets the second lock

CTDB database recovery is serial

Freeze all databases
Recover databases one by one
Unlock all databases

Solution

Do database recovery in parallel

Start freeze of all databases
As soon as database is frozen, recover database
Process all pending call requests for that database

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Problem

CTDB cannot freeze database since Samba is holding a lock

Samba will not release a lock, till it gets the second lock

CTDB database recovery is serial

Freeze all databases
Recover databases one by one
Unlock all databases

Solution

Do database recovery in parallel

Start freeze of all databases
As soon as database is frozen, recover database
Process all pending call requests for that database

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Problem

CTDB cannot freeze database since Samba is holding a lock

Samba will not release a lock, till it gets the second lock

CTDB database recovery is serial

Freeze all databases
Recover databases one by one
Unlock all databases

Solution

Do database recovery in parallel

Start freeze of all databases

As soon as database is frozen, recover database
Process all pending call requests for that database

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Problem

CTDB cannot freeze database since Samba is holding a lock

Samba will not release a lock, till it gets the second lock

CTDB database recovery is serial

Freeze all databases
Recover databases one by one
Unlock all databases

Solution

Do database recovery in parallel

Start freeze of all databases
As soon as database is frozen, recover database

Process all pending call requests for that database

Amitay Isaacs CTDB Stories



All nodes banned on single node failure

Problem

CTDB cannot freeze database since Samba is holding a lock

Samba will not release a lock, till it gets the second lock

CTDB database recovery is serial

Freeze all databases
Recover databases one by one
Unlock all databases

Solution

Do database recovery in parallel

Start freeze of all databases
As soon as database is frozen, recover database
Process all pending call requests for that database

Amitay Isaacs CTDB Stories



Real time or not

Background

CTDB runs with real-time priority

CTDB creates lots of processes.

ctdb_fork() - reset process priority

fork() is found to be expensive on busy systems

Replace fork() with vfork() and exec*()

Introduce helper processes - ctdb_event_helper

Regression

All event scripts now run with real-time priority

CTDB_MANAGES_SAMBA=yes

In 50.samba, startup event starts smbd

Amitay Isaacs CTDB Stories



Real time or not

Background

CTDB runs with real-time priority

CTDB creates lots of processes.

ctdb_fork() - reset process priority

fork() is found to be expensive on busy systems

Replace fork() with vfork() and exec*()

Introduce helper processes - ctdb_event_helper

Regression

All event scripts now run with real-time priority

CTDB_MANAGES_SAMBA=yes

In 50.samba, startup event starts smbd

Amitay Isaacs CTDB Stories



Real time or not

Background

CTDB runs with real-time priority

CTDB creates lots of processes.

ctdb_fork() - reset process priority

fork() is found to be expensive on busy systems

Replace fork() with vfork() and exec*()

Introduce helper processes - ctdb_event_helper

Regression

All event scripts now run with real-time priority

CTDB_MANAGES_SAMBA=yes

In 50.samba, startup event starts smbd

Amitay Isaacs CTDB Stories



Real time or not

Background

CTDB runs with real-time priority

CTDB creates lots of processes.

ctdb_fork() - reset process priority

fork() is found to be expensive on busy systems

Replace fork() with vfork() and exec*()

Introduce helper processes - ctdb_event_helper

Regression

All event scripts now run with real-time priority

CTDB_MANAGES_SAMBA=yes

In 50.samba, startup event starts smbd

Amitay Isaacs CTDB Stories



Real time or not

Background

CTDB runs with real-time priority

CTDB creates lots of processes.

ctdb_fork() - reset process priority

fork() is found to be expensive on busy systems

Replace fork() with vfork() and exec*()

Introduce helper processes - ctdb_event_helper

Regression

All event scripts now run with real-time priority

CTDB_MANAGES_SAMBA=yes

In 50.samba, startup event starts smbd

Amitay Isaacs CTDB Stories



Real time or not

Background

CTDB runs with real-time priority

CTDB creates lots of processes.

ctdb_fork() - reset process priority

fork() is found to be expensive on busy systems

Replace fork() with vfork() and exec*()

Introduce helper processes - ctdb_event_helper

Regression

All event scripts now run with real-time priority

CTDB_MANAGES_SAMBA=yes

In 50.samba, startup event starts smbd

Amitay Isaacs CTDB Stories



Real time or not

Background

CTDB runs with real-time priority

CTDB creates lots of processes.

ctdb_fork() - reset process priority

fork() is found to be expensive on busy systems

Replace fork() with vfork() and exec*()

Introduce helper processes - ctdb_event_helper

Regression

All event scripts now run with real-time priority

CTDB_MANAGES_SAMBA=yes

In 50.samba, startup event starts smbd

Amitay Isaacs CTDB Stories



Real time or not

Background

CTDB runs with real-time priority

CTDB creates lots of processes.

ctdb_fork() - reset process priority

fork() is found to be expensive on busy systems

Replace fork() with vfork() and exec*()

Introduce helper processes - ctdb_event_helper

Regression

All event scripts now run with real-time priority

CTDB_MANAGES_SAMBA=yes

In 50.samba, startup event starts smbd

Amitay Isaacs CTDB Stories



Real time or not

Background

CTDB runs with real-time priority

CTDB creates lots of processes.

ctdb_fork() - reset process priority

fork() is found to be expensive on busy systems

Replace fork() with vfork() and exec*()

Introduce helper processes - ctdb_event_helper

Regression

All event scripts now run with real-time priority

CTDB_MANAGES_SAMBA=yes

In 50.samba, startup event starts smbd

Amitay Isaacs CTDB Stories



Real time or not

Background

CTDB runs with real-time priority

CTDB creates lots of processes.

ctdb_fork() - reset process priority

fork() is found to be expensive on busy systems

Replace fork() with vfork() and exec*()

Introduce helper processes - ctdb_event_helper

Regression

All event scripts now run with real-time priority

CTDB_MANAGES_SAMBA=yes

In 50.samba, startup event starts smbd

Amitay Isaacs CTDB Stories



Real time or not

Background

CTDB runs with real-time priority

CTDB creates lots of processes.

ctdb_fork() - reset process priority

fork() is found to be expensive on busy systems

Replace fork() with vfork() and exec*()

Introduce helper processes - ctdb_event_helper

Regression

All event scripts now run with real-time priority

CTDB_MANAGES_SAMBA=yes

In 50.samba, startup event starts smbd

Amitay Isaacs CTDB Stories



Fixing compiler warnings

Background

CTDB sets up pipe from a child process

So child process can send the status via pipe
Pipe close indicates failure of child

Many read()/write() calls without checking return values

Replace all read()/write() with sys_read()/sys_write()

Regression

While testing on VMs, CTDB consuming 100% CPU

Tracing shows CTDB is busy stuck in sys_write()

Samba not getting scheduled to read from CTDB

If write() calls fails with EAGAIN, back off

Amitay Isaacs CTDB Stories



Fixing compiler warnings

Background

CTDB sets up pipe from a child process

So child process can send the status via pipe
Pipe close indicates failure of child

Many read()/write() calls without checking return values

Replace all read()/write() with sys_read()/sys_write()

Regression

While testing on VMs, CTDB consuming 100% CPU

Tracing shows CTDB is busy stuck in sys_write()

Samba not getting scheduled to read from CTDB

If write() calls fails with EAGAIN, back off

Amitay Isaacs CTDB Stories



Fixing compiler warnings

Background

CTDB sets up pipe from a child process

So child process can send the status via pipe

Pipe close indicates failure of child

Many read()/write() calls without checking return values

Replace all read()/write() with sys_read()/sys_write()

Regression

While testing on VMs, CTDB consuming 100% CPU

Tracing shows CTDB is busy stuck in sys_write()

Samba not getting scheduled to read from CTDB

If write() calls fails with EAGAIN, back off

Amitay Isaacs CTDB Stories



Fixing compiler warnings

Background

CTDB sets up pipe from a child process

So child process can send the status via pipe
Pipe close indicates failure of child

Many read()/write() calls without checking return values

Replace all read()/write() with sys_read()/sys_write()

Regression

While testing on VMs, CTDB consuming 100% CPU

Tracing shows CTDB is busy stuck in sys_write()

Samba not getting scheduled to read from CTDB

If write() calls fails with EAGAIN, back off

Amitay Isaacs CTDB Stories



Fixing compiler warnings

Background

CTDB sets up pipe from a child process

So child process can send the status via pipe
Pipe close indicates failure of child

Many read()/write() calls without checking return values

Replace all read()/write() with sys_read()/sys_write()

Regression

While testing on VMs, CTDB consuming 100% CPU

Tracing shows CTDB is busy stuck in sys_write()

Samba not getting scheduled to read from CTDB

If write() calls fails with EAGAIN, back off

Amitay Isaacs CTDB Stories



Fixing compiler warnings

Background

CTDB sets up pipe from a child process

So child process can send the status via pipe
Pipe close indicates failure of child

Many read()/write() calls without checking return values

Replace all read()/write() with sys_read()/sys_write()

Regression

While testing on VMs, CTDB consuming 100% CPU

Tracing shows CTDB is busy stuck in sys_write()

Samba not getting scheduled to read from CTDB

If write() calls fails with EAGAIN, back off

Amitay Isaacs CTDB Stories



Fixing compiler warnings

Background

CTDB sets up pipe from a child process

So child process can send the status via pipe
Pipe close indicates failure of child

Many read()/write() calls without checking return values

Replace all read()/write() with sys_read()/sys_write()

Regression

While testing on VMs, CTDB consuming 100% CPU

Tracing shows CTDB is busy stuck in sys_write()

Samba not getting scheduled to read from CTDB

If write() calls fails with EAGAIN, back off

Amitay Isaacs CTDB Stories



Fixing compiler warnings

Background

CTDB sets up pipe from a child process

So child process can send the status via pipe
Pipe close indicates failure of child

Many read()/write() calls without checking return values

Replace all read()/write() with sys_read()/sys_write()

Regression

While testing on VMs, CTDB consuming 100% CPU

Tracing shows CTDB is busy stuck in sys_write()

Samba not getting scheduled to read from CTDB

If write() calls fails with EAGAIN, back off

Amitay Isaacs CTDB Stories



Fixing compiler warnings

Background

CTDB sets up pipe from a child process

So child process can send the status via pipe
Pipe close indicates failure of child

Many read()/write() calls without checking return values

Replace all read()/write() with sys_read()/sys_write()

Regression

While testing on VMs, CTDB consuming 100% CPU

Tracing shows CTDB is busy stuck in sys_write()

Samba not getting scheduled to read from CTDB

If write() calls fails with EAGAIN, back off

Amitay Isaacs CTDB Stories



Fixing compiler warnings

Background

CTDB sets up pipe from a child process

So child process can send the status via pipe
Pipe close indicates failure of child

Many read()/write() calls without checking return values

Replace all read()/write() with sys_read()/sys_write()

Regression

While testing on VMs, CTDB consuming 100% CPU

Tracing shows CTDB is busy stuck in sys_write()

Samba not getting scheduled to read from CTDB

If write() calls fails with EAGAIN, back off

Amitay Isaacs CTDB Stories



Fixing compiler warnings

Background

CTDB sets up pipe from a child process

So child process can send the status via pipe
Pipe close indicates failure of child

Many read()/write() calls without checking return values

Replace all read()/write() with sys_read()/sys_write()

Regression

While testing on VMs, CTDB consuming 100% CPU

Tracing shows CTDB is busy stuck in sys_write()

Samba not getting scheduled to read from CTDB

If write() calls fails with EAGAIN, back off

Amitay Isaacs CTDB Stories



Questions/Comments?

Amitay Isaacs CTDB Stories


