
Windows Search Protocol &
Samba

Noel Power

noel.power@suse.com

mailto:noel.power@suse.com

2

Agenda

● Overview
● History
● Some WSP protocol info
● Approach to a WIP Implementation
● Demo
● Questions

Windows Search (some background)

4

Overview

“Windows Search is a desktop search platform that has
instant search capabilities for most common file and
data types such as email, contacts, calendar
appointments, documents, photos, multimedia etc.
These capabilities enable users to find, manage, and
organize the increasing amount of data common in
home and enterprise environments.” - MSDN

5

History

There have been a number incarnations of indexing
technologies on Windows.

• Indexing service shipped with Windows NT 4.0 (option
pack) (first shipped in the late 90's), Windows 2000 &
later.

• Windows Desktop Search (Windows XP, Windows
2000 & Windows server 2003 (shipped as an addin)

• Instant search on Vista

• Windows Search (an addin for XP) and included
standard from Vista onwards

6

Windows Search

• Windows Search Service (WSS)

• Development platform

• User interface

7

Windows Search Service (WSS)

• Builds an index (from a selected location(s)) of a
collection of documents by
‒ Analyzing files

‒ Extracting content, properties & meta data

• Maintains a single index shared by all users

• Maintains security restrictions on content access

• Process remote queries from client computers on the
network.

8

Windows Search UI

• Integrated into all Windows explorer windows (Vista &
later)

• Incremental search (“search as you type”) that
continuously refines your search as you type

• Enhanced column headers in Windows Explorer views
enable sorting and grouping documents in different
ways. For example, results can be sorted according to
name, date modified, type, size, and tag

• Searches can be saved (to be retrieved later). The
results will be dynamically repopulated based on the
original criteria when the saved search is opened.

9

Windows Search UI

• Preview handlers and thumbnail handlers enable
users to preview documents in Windows Explorer
without having to open the application that created
them.

10

Windows Search Queries

• Advanced Query Syntax (AQS)

• Natural Query Syntax (NQS)

• Structured Query Language (SQL) (well actually
Windows Search SQL)

• Structured query interfaces (programmatic support for
building queries)

• search-ms protocol, allows queries to be expressed in
terms of parameter/value arguments and supports all
of the above

11

Query examples

• Advanced Query Syntax
‒ “search phrase(s)" System.Author:(npower OR noel)

System.ItemFolderNameDisplay:C:”\MyDocs”

• Windows Search SQL
‒ "SELECT Path FROM UserA-4.SystemIndex.Scope() WHERE

"SCOPE"= 'file://UserA-4/Users/UserA/Pictures' AND CONTAINS(*,
'"flowers"')"

• Natural Query Syntax (NQS)
‒ "Documents created last week by npower"

• search-ms protocol
‒ search-ms::query=flowers&crumb=kind:pics

WSP Protocol

13

Windows Search Protocol

• Allows a client to issue queries to a server hosting the
Windows Search service.

• The protocol is primarily intended to be used for full-
text queries.

• Presents the query in a binary representation of what
looks most like Windows Search SQL than the other
query dialects.

• Uses SMB pipe protocol

• Has a dedicated pipe \pipe\MSFTEWDS allocated for
this protocol

14

The Protocol (some details)

• Most messages are client initiated

• In general simple request/response model (there
seems maybe some exceptions e.g. GetRowNotify)

• Most of the useful info for the server probably
encapsulated by the following messages
‒ CPMConnectin

‒ CPMCreateQueryIn

‒ CPMSetBindingsIn

‒ CPMGetRows

15

Query messages

• CPMConnectin
‒ Specifies catalog name and configuration information (query-

type, locale, search in folders.

• CPMCreateQuery
‒ Specifies the restrictions, groupings, sorting, other query

related config info

• CPMSetBindings
‒ Specifies the columns to be returned

• CPMGetRows
‒ Returns rows for a specific cursor, allows seeking to specific

bookmarks

16

The Protocol (simplified exchange)

17

Why?

• Simply curiosity! and an urge to learn more about
samba.

• Choosing WSP as a protocol to implement was mostly
random (result of seeing some question on a
mailinglist)

• Samba already talks named pipes (albeit a layer on
top e.g. DCERPC).

• On linux there are already indexers such as Beagle
&Tracker that seem conceptually similar enough
satisfy at least basic search requests.

18

Why?

• If either the location searched isn't indexed or
connecting to remote WSS fails then search falls back
to directly accessing files. This means we have
nothing to lose if we can't handle some queries but
lots to gain (speed/bandwidth etc.) - Not strictly true
yet (still missing some detail to make this work
consistently)

• Seamless integration with Windows Search UI

• We should get the use of AQS & Windows SQL for
free (will be already converted to the binary query by
the time the server gets it) NQS ? (at least some
experiments indicate client does convert that)

WIP Prototype

20

Approach

• Create marshalling and unmarshalling routines for all
the messages and structures described in the protocol
document

• Some tools/code to parse the WSP message
structures in order extract useful (and human
readable) info.

• Create a simple client to inject messages to a
windows server to verify both message content and
structure.

• Try and identify the elements from a search that can
be translated into a tracker query

21

Approach

• Gather lots of wireshark dumps of the standard
searches available for the search UI

• Create a simple WIP server to achieve the following
goals
‒ Understand better message and data interaction

‒ Allow piecemeal integration with say 'tracker' with the goal of
providing basic search capability for some standard queries
(e.g. search Documents, Pictures. Videos, Music)

‒ Develop mapping/translation functionality to convert the
Windows Search query to 'tracker' sparql

‒ Prove viability of using tracker to satisfy standard queries from
windows integrated search UI.

‒ Provide a basis for a generic extensible solution for a 'real'
server

22

WSP Server

Approach

• Architecture for WSP server daemon

Client SMBD

Other Indexer?

Beagle?

A
bstract Interface

Tracker

Tracker

23

Tracker Challenges

• Converting binary query related messages into sparql
‒ Extract restriction expression tree from CPMCreateQuery msg

‒ Extract column bindings from CPMSetBindings

• Integration of SMBD/tevent with libtracker-sparql with
uses glib event loop

• Tracker essentially runs 'per' user but we really need a
'system' wide tracker.

• Tracker dbus-context means smbd needs to launched
'specially' otherwise smbd can't communicate with
tracker

24

Converting WSP query to SPARQL

SELECT ?name
WHERE {
 ?x foaf:name ?name .
}
FILTER (fn:starts-with(?name,'foo'))

• Simple SPARQL

• Extract the elements of the 'SELECT' statement from
both the CPMCreateQuery & CPMSetBindings
messages

• Extract the 'WHERE' & 'FILTER' clauses from the
CPMCreateQuery message

• For simplicity I use a 'catch-all' matching graph pattern
‒ WHERE { ?urn nie:url ?url .} and then append a FILTER

generated from the binary query restriction set

25

General Properties

Windows Value returned WSP server

System.ParsingName Generated from nfo:fileName

System.ItemDisplay Generated from nfo:fileName

Path Generated from nie:url

System.DateModified nfo:FileLastModified

System.DateAccessed nfo:FileLastAccessed

System,DateCreated nfo:FileCreated

System.Size nfo:fileSize

System.ItemType Generated from nfo:fileName

System.Kind Generated from nie:mimeType

System.EntryID Generated by the server

And many more........

26

Window8.1 Search Videos example

infix restriction expression

"(RTPROPERTY System.Kind = 'video' && (!RTPROPERTY
System.Shell.SFGAOFlagsStrings = 'hidden' && RTPROPERTY
System.Shell.OmitFromView != 'true') && RTPROPERTY Scope = '
file://old-trouble/testshare/')"

Converted tracker sparql FILTER expression

"(?type IN (nfo:Video) && regex(nie:url(?u),'^
file:///data7/test-share-smaller/'))"

And finally into full tracker sparql query

"SELECT nie:isStoredAs(?u) nfo:fileName(?u) nie:mimeType(?u)
nie:url(?u) nfo:fileLastModified(?u) nfo:fileLastAccessed(?u)
nfo:fileSize(?u) WHERE{?u nie:url ?url . ?u rdf:type ?type FILTER(?type
IN (nfo:Video) && regex(nie:url(?u),'^file:///data7/test-share-smaller/'))}"

smb://old-trouble/testshare/
file:///home/jonas/data7/test-share-smaller/

27

Windows8.1 Freetext search example

Infix restriction expression

"(((((((((((((((RTPROPERTY System.ItemNameDisplay = 'john' ||
RTPROPERTY System.ItemAuthors = 'john') || RTPROPERTY
System.Keywords = 'john') || RTPROPERTY f29f85e0-4ff9-1068-ab91-
08002b27b3d9/24 = 'john') || RTPROPERTY f29f85e0-4ff9-1068-ab91-
08002b27b3d9/26 = 'john') || RTPROPERTY System.Music.AlbumTitle =
'john') || RTPROPERTY System.Title = 'john') || RTPROPERTY
System.Music.Genre = 'john') || RTPROPERTY
System.Message.FromName = 'john') || RTPROPERTY System.Subject
= 'john') || RTPROPERTY System.Contact.FullName = 'john') ||
RTCONTENT 00000000-0000-0000-0000-000000000000/#MRPROPS
equals john) || RTCONTENT 00000000-0000-0000-0000-
000000000000/#MRPROPS starts with john) || RTCONTENT All equals
john) || RTCONTENT All starts with john) && insert expression for
WHEREID = 36)"

Note: Whereid refers to a previously encountered restriction set that is to
be reused (but not shown here)

28

Windows8.1 Freetext search example

Full tracker sparql query

"SELECT nie:isStoredAs(?u) nfo:fileName(?u) nie:mimeType(?u)
nie:url(?u) nfo:fileLastModified(?u) nfo:fileLastAccessed(?u)
nfo:fileSize(?u) WHERE{?u nie:url ?url FILTER(((((((((((((((nfo:fileName(?
u) = 'john')))) || nmm:musicAlbum(?u) = 'john') || nie:title(?u) = 'john') ||
nmm:genre(?u) = 'john') || nmo:from(?u) = 'john') ||
nmo:messageSubject(?u) = 'john')))) || nie:plainTextContent(?u) = 'john'
|| nie:title(?f) = 'john') || fn:contains(fn:lower-case(nie:plainTextContent(?
u)), 'john') || fn:contains(fn:lower-case(nie:title(?u)),'john') || fn:starts-
with(fn:lower-case(nfo:fileName(?u)), 'john')) && (regex(nie:url(?u),'^
file:///data7/test-share-smaller/'))}"

Note: WhereId expression has been expanded above

file:///home/jonas/data7/test-share-smaller/

29

Windows Search Protocol
Implementation

• Issues
‒ Lots of structures > 50 defined (but actually even more due to

implementation issues).

‒ Quite a few messages built on top.

‒ Protocol is biased towards the windows search service
implementation.

• Protocol documentation errors and/or ambiguities
‒ Feature mismatch between linux indexer and WSS

‒ Complex restrictions (vector modeling, probalistic ranking etc.)

‒ complexity of mapping 'handles', Document IDs, and cursor iteration

‒ Some SMB DCERPC related problems

‒ WaitNamedPipe, not handled for wsp pipe

‒ max_data, transaction layer hardcoded to DCERPC fragment size

30

Windows Search Protocol
Implementation

• Issues
‒ Bookmarks

‒ A marker that uniquely identifies a row within a set of rows

‒ Chapter

‒ A range of rows within a set of rows.

‒ WorkId

‒ a document ID identifying a document within a result set

Documentation troubles

32

Some documentation issues

• Some structures have extra (or different layout) data
e.g. CSortSet seems to have an extra unexplained 8
bytes

• Some critical messages structures e.g. CRowVariant
documentation is at worst incorrect at best ambiguous
regarding real implementation usage.

• First documentation problem is the requirement of a
impersonationlevel of SECURITY_IDENTIFICATION
while it seem that actually
SECURITY_IMPERSONATION (unfortunate
consequence of this is things work 'till a point and then
fail for inexplicable reasons)

• Protocol documentation issues

IDL TROUBLES

34

Marshalling and UnMarshalling

• The > 30 messages that make up the protocol are
based on > 50 interconnected and interdependent
structures

• To hand code or not to handcode that is the question?
‒ Well, I totally Failed to handcode, too error prone

‒ Alternatives? Use pidl from samba – unfortunately the
following make representing the structures... troublesome

‒ Elements of messages structures that depend on dynamic runtime info

‒ Padding

‒ Recurstive/nested structures

• Because of the interdependence between the
structures, generating is an all or nothing task.

Where are we

36

Progress

• A nearly complete Wireshark dissector based on
Gregor Beck's original version [1]

• A simple server [2] that
‒ Has all structures and messages represented in idl (working

with patched pidl)

‒ Implements the basic messages of WSP protocol

‒ Has a specific concrete Tracker implementation

‒ Is capable of servicing some standard queries (video, music,
document, pictures)

[1] branch: wsp-hacking-v2 repo: ssh://people.freedesktop.org/~noelp/noelp-wireshark-wsp
[2] branch: wsp-hacking-v2 repo: ssh://people.freedesktop.org/~noelp/noelp-wireshark-wsp

Demo

38

Conclusion

• Was interesting to look into this

• Learned quite a lot (but possibly not exactly what I
intended to learn about)

• It certainly is possible to service basic WSP queries
with Tracker and the indexer.

• There are concerns
‒ Scalablilty

‒ Performance (e.g cursor iteration with large datasets)

‒ Difficulty in translating queries to tracker-sparql

39

TODO

• Make wsp server async

• Increase WSP/Windows property mapping to tracker
conversion

• Smarter/Better Tracker Sparql generation

• Decide on server architecture
‒ Child per client or just one instance

‒ Tracker part in separate process or thread

‒ Single tracker connection or tracker connection per child

‒ Special Tracker user ?

40

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

