
© 2013 IBM Corporation

AutoRID module extensions
to control ID generation

 Saurabh Gawande, Abhidnya Joshi, Mathias Dietz

IBM

© 2013 IBM Corporation2 May 2013

Introduction

 Saurabh Gawande, Abhidnya Joshi

 Working for IBM India Systems and Technology Lab (ISTL) in Pune on the IBM SONAS and Storwize V7000
Unified product.

• Mathias Dietz

 IBM Research and Development in Mainz/Germany. Architect in the IBM SONAS and Storwize V7000 Unified
product team. Experience with Samba as part of the IBM SoFS offering since 2006 and the IBM OESV offering
since 2003

IBM SONAS - Scale Out Network Attached Storage

Modular high performance storage with massive scalability and high availability.
Supports multiple petabytes of storage for organizations that need billions of files in a single
file system.

http://www.ibm.com/systems/storage/network/sonas/

IBM Storwize V7000 Unified

A virtualized storage system designed to consolidate block and file
workloads into a single storage system for simplicity of management,
reduced cost, highly scalable capacity and high availability.

http://www.ibm.com/systems/storage/disk/storwize_v7000/

http://www.ibm.com/systems/storage/network/sonas/

© 2013 IBM Corporation

The Need!

• Unix based systems use UID/GID for authorization/access to files,
whereas Windows based systems use SID.

• Unix based storage systems use Identity management modules
from Samba to map Windows SID to Unix UID/GID.

• Complexity of customer environments is increasing, a typical
environment has grown over years and consists of multiple (trusted)
domains and sites.

• In today's world, replication of storage systems is a common
use case. Hence to support replication, its mandatory to have same
ID maps (xid ↔ sid) on all storage systems.

replication

© 2013 IBM Corporation

ID mapping modules in Samba

• Samba already provides several idmap modules
– idmap_tdb2, idmap_rid, idmap_autorid, idmap_ad,

• Some of them (i.e. rid,ad) support the replication use case
already. However, these modules have some disadvantages
which makes them not the best choice for a storage system.
– idmap_rid cannot be used by storage admins without prior

knowledge of domain information
– idmap_ad requires Active Directory schema extension and

maintenance of dedicated UNIX UID/GID fields.
– Both do not deal with BUILTIN and Well-known SIDs

• 'Autorid' ID mapping module eliminates the need of this
knowledge but

© 2013 IBM Corporation

Range allocation is NOT deterministic

Range of an AD domain is allocated on first come first served basis.

i.e an AD domain which access the storage system first gets the 1st
range, whereas the same AD domain might get 2nd range on another
storage system.
This may lead to different id mappings on different storage systems.

Thus 'Autorid' module cannot be used for replication.

“Autorid” Module – Challenge 1

© 2013 IBM Corporation

Approach

In a multi-system environment where replication is used, configure one
system as a ID mapping master and the others as slave.

Prevent creation of new domain ranges on slave systems by enabling
Autorid “read only” option.

Provide a mechanism to export the ID mapping configuration from one
storage system and import on another system.

“Autorid” Module – Challenge 1

Note: Since Domain additions are relatively seldom, the synchronization
between multiple systems can be done on a scheduled base (daily, weekly)

© 2013 IBM Corporation

To export/import the “Autorid” configuration from the master to the slave
systems the following commands are proposed

EXPORT
net idmap autorid getrange
 This command will dump the domain SID and domain number from autorid.tdb.

net idmap autorid getconfig
 This command will dump the CONFIG section from autorid.tdb

IMPORT
net idmap autorid setrange
 This command will create the ID map for the specified domain SID

net idmap autorid setconfig
 This command will set the CONFIG section in autorid.tdb

Note: net idmap commands will work directly on the autorid tdb and therefore ignore read-only
option of autorid.

Implementation details for challenge 1

© 2013 IBM Corporation

Challenge 2

Large RIDs may not fit into the range

In the current “Autorid” algorithm only one range is allocated to every
domain. The current algorithm does not take into account the increase in
RID of the domain. Hence, if a legitimate registered domain's RID
crosses the range size, then that RID is not mapped, thus leading to no
access.
Thus 'autorid' module cannot be used in large, complex customer
environments.

 S-1-5-21-1596698841-3664360031-4006597652-2345678

Challenges - “Autorid” module

Domain ID RIDPrefix

© 2013 IBM Corporation

Approach

Avoid overflow of large RIDs by implementing a new ID mapping
algorithm which extend the capability of “Autorid”.

This new algorithm allows to associate multiple ranges for a single
domain in order to handle the unplanned growth of RID in an Active
Directory domain.

“Autorid” Module – Challenge 2

© 2013 IBM Corporation

idmap config * : backend = autorid
idmap config * : range = 10000000-299999999
idmap config * : rangesize = 1000000
idmap config * : read only = no

key(7) = "CONFIG\00"
data(49) = "minvalue:10000000 rangesize:1000000 maxranges:290"

key(41) = "S-1-5-21-606640139-1729040616-4042376577\00"
data(4) = "\01\00\00\00"

key(2) = "1\00"
data(41) = "S-1-5-21-606640139-1729040616-4042376577\00"

key(11) = "NEXT RANGE\00"
data(4) = "\02\00\00\00"

Challenge 2 - “AutoRID” configuration

Goal: New implementation must be compatible with existing
configuration and setups.

smb.conf:

autorid.tdb

© 2013 IBM Corporation

The new “Autorid” algorithm will allocate multiple ranges for a single domain if needed.

1. The module will calculate a MULTIPLIER (= floor(RID/RANGESIZE))

2. Depending upon the MULTIPLIER value, a search key is created.
If MULTIPLIER is zero, then KEY is the SID itself (remain backward compatibility)
If the MULTIPLIER is non-zero, then the KEY is SID#MULTIPLIER

3. The module will try to find the search KEY in the autorid.tdb.
If the KEY is present, then the domain number is returned
If the KEY is not present, then an entry (KEY, DOMAIN NUMBER) is added into
the autorid.tdb and high watermark is incremented

4. Apply the formula to calculate the UID/GID*
 UID/GID = Lower ID + (DomainNr*RangeSize) + RID –(Multiplier*RangeSize)

Note: Multiplier greater than 0 (say 2) does not mean that 2 domain ranges are allocated. For eg: if
domain number 0 is already allocated and new SID comes up with multiplier as 10, then new SID will
get domain number 1 (not 1 to 10). This implies that larger RID (falling in different domain number)
might get lower ID depending upon the order of access.

*the exact formula has be optimized by Michael Adam but the main principle remains

Implementation details for challenge 2

© 2013 IBM Corporation

SID

Search
Domain

SID

LOW_ID+
ID*Rangesize

+RID

RID
>=

Range
Size

UID/GID

Range found
Create range

Range NOT found

No

Abort
ye
s

SID

Search
Key

LOW_ID+
ID*Rangesize+RID -

(Multiplier*RangeSize)

UID/GID

Range found Create range

Range NOT found

Multiplier*
!= 0

 Yes

 Key=DomainSID#Multiplier

Key =
DomainSID

No *Multiplier =
floor(RID/Rangesize)

Old Implementation New Implementation

© 2013 IBM Corporation

1. 'testuser1' from domain XYZ tries to access the system.
SID of testuser1 is S-1-5-21-3314179063-1446859507-3792912289-1025
idmap config * : backend = autorid
idmap config * : range = 10000000-299999999
idmap config * : rangesize = 1000000

2. autorid module is calculating the multiplier.
MULTIPLIER is floor(1025 / 1000000) = 0

3. autorid module searches KEY S-1-5-21-3314179063-1446859507-3792912289
in autorid.tdb. As it is not present, an entry is added into autorid.tdb

(S-1-5-21-3314179063-1446859507-3792912289 , 0)
Note:0 (domain number) is taken assuming it is the first slot to be allocated

4. UID of testuser1 is calculated
 UID/GID = Lower ID + (DomainNr*RangeSize) + RID –(Multiplier*RangeSize)
 UID/GID = 10000000 + 0 * 1000000 + 1025 – 0*1000000
 UID/GID = 10001025

Implementation details for challenge 2 – Sample Flow (1)

© 2013 IBM Corporation

1. 'testuser1' from domain XYZ tries to access the system.
SID of testuser1 is S-1-5-21-3314179063-1446859507-3792912289-2025000
idmap config * : backend = autorid
idmap config * : range = 10000000-299999999
idmap config * : rangesize = 1000000

2. autorid module is calculating the multiplier.
MULTIPLIER is floor(2025000 / 1000000) = 2

3. autorid module searches KEY S-1-5-21-3314179063-1446859507-3792912289#1
in autorid.tdb. As it is not present, an entry is added into autorid.tdb

(S-1-5-21-3314179063-1446859507-3792912289#1, 1)
Note:domain number 1 is taken assuming that 0th slot is already taken by sample flow #1

4. UID of testuser1 is calculated
 UID/GID = Lower ID + (DomainNr*RangeSize) + RID –(Multiplier*RangeSize)
 UID/GID = 10000000 + 1 * 1000000 + 2025000 – 2*1000000
 UID/GID = 11025000

Implementation details for challenge 2 – Sample Flow (2)

© 2013 IBM Corporation

Well-known IDs are not mapped at all

Well-known SIDs are special well defined SIDs for dedicated authorities.
They don't belong to a domain .
e.g.

S-1-1-0 Everyone
S-1-3-0 Creator Owner
....

The autorid module did not support Well-known SIDs.

Approach
Preallocate Well-known SIDs in the ALLOC_POOL in a predefined order
(deterministic).e.g. “Everyone” will always get the first ID in the first range
(i.e.1000001)

“Autorid” Module – Challenge 3

© 2013 IBM Corporation

BUILT-IN SIDs are not deterministic

Built-in SIDs are part of a special container called 'BUILTIN'. This
includes the local groups that exist on a default NT installation
e.g
Administrators (SID: S-1-5-32-544),
Print Operators (SID: S-1-5-32-550),
....
The “Autorid” module does assign the next free ID from the alloc range.
It does not honor the RID because the call to winbind asking for a free gid
does not include the SID for which the gid is asked for (see
wbcAllocateGid)

Approach
Still needs to be resolved
e.g introduce a new interface in winbind component which will identify the
BUILTIN SID, allocate a separate range for BUILTINS and use the RID
component of SID to generate the ID.

“Autorid” Module – Challenge 4

© 2013 IBM Corporation17 May 2013

Questions ?

© 2013 IBM Corporation18 May 2013

Thank you !

	Replication Support in Samba for Autorid Module
	Folie 2
	The Need!
	ID mapping in Samba
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

