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Overview of Linux CIFS

● The in-kernel filesystem that “speaks” SMB

● Samba-affiliated project, but it's not part of samba.

● Two main pieces:
● kernel filesystem (aka cifs.ko)

● Most of the code
● Distributed as part of the Linux kernel

● cifs-utils
● Small package of user space utilities
● Mount helpers and kernel callout programs
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Mounting a CIFS Filesystem

● Typical mount syntax:

# mount //server.example.com/share \

          /mnt/cifs -o <options>

● cifs.ko supports a lot of options, most of which are 
documented in mount.cifs(8).

● Strive to allow for sensible defaults, but it's not 
always possible
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SMB Version Selection

● cifs.ko “speaks” SMB1 by default

● As of kernel v3.5, cifs.ko supports SMBv2.1 as an 
experimental feature

● Also nominal support for 2.002 and 3.0, but the 
implementations are not quite as robust

● Use the “vers=” mount option to select

● Not much advantage currently to using versions 
higher than 1.0. (2.x needs support for multicredit 
requests and compounds)
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Authentication

● sec=ntlm – (default pre-v3.7)

● sec=ntlmssp – (default post v3.7)

● sec=ntlmv2 (not well supported by servers)

● sec=none: Anonymous auth

● sec=krb5: Kerberos (requires upcall)

● Append “i” (for “integrity”) to mandate signed 
sessions
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Kerberos mount upcall process
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Kerberos Mount Credentials

● Ticket used to handle the SMBs generated by 
mount() syscall

● Governed by “-o cruid” option. (In really old 
kernels, by the uid= option too, but that was a bug)

● These creds are always associated with the root 
user

● In single-user mount, all SMBs use these 
credentials regardless of who is accessing mount

● In multiuser mount, only root uses these creds

● Also possible to use keytab, use -o username= to 
tell it what principal name to use
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Cache Coherency

● cache= option
● loose:  uses NFSv3-like semantics. Only invalidate 

caches when it appears that something has 
changed.

● none: pagecache is not used. All reads and writes 
are done through to the server. Much like an implicit 
O_DIRECT. (aka forcedirectio on pre-v3.5 kernels)

● strict: stricter adherence to the protocol. Only use 
the cache when an oplock is held. (aka strictcache 
on pre-v3.5 kernels)

● Default in v3.7+ is strict, but in older kernels it was 
loose. 
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FSCache

● Allows you to cache data on local disk for 
(sometimes) faster access...and less load on server.

● Fundamentally at odds with the standard CIFS 
cache coherency model after a reboot

● Can also act as “swap for pagecache” -- alternate 
way to get to data instead of going to server

● Only persistent across client reboots with 
cache=loose
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Byte Range Locking Coherency

● Windows and POSIX locks don't mix well

● Windows locks are mandatory. Read and write 
requests are blocked when there is a lock held.

● POSIX locks are advisory. Only block other lock 
requests.

● POSIX byte range locks can split and merge.

● Windows locks “stack”

● Windows/Linux apps locking same files are very 
problematic

● Client caches locks when it has an oplock

● Best to avoid applications that do complex locking
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Write Performance

● v3.0+ support async writes for cached requests
● Cached I/O is page-aligned

● V3.4+ for uncached requests

● Max wsize is also larger in v3.0+

● wsize= option is a starting point for negotiation

● SMB2 capped at 64k  (no multicredit support)
non-POSIX  POSIX

Default 64k 1M

Maximum 128k 16M
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Read Performance

● v3.2+ support async and larger reads into cache
● Page aligned I/Os due to doing through pagecache

● v3.5+ has support for uncached reads

● On 32-bit arch, you want v3.7+ (removed artificial 
serialization to handle mapping highmem pages)

● SMB2 capped at 64k (no multicredit support).

non-POSIX POSIX

Default 60k 1M

Maximum 128k 16M
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Socket options

● Can direct the TCP port to use with port= option
● By default, client tries to use port 445 first and then 

falls back to 139.
● Avoid port 139 if possible (kernel treats that port as 

implicitly needing NetBIOS encapsulation), which 
adds some overhead.

● Undocumented sockopt= option is now deprecated 
in v3.8.

● TCP_NODELAY was only one implemented, and 
never proved to have any effect in most cases.

●  Kernel now corks/uncorks the socket when sending.
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POSIX Extensions

● Allows the “tunneling” of POSIX semantics over 
CIFS protocol:

● Larger read/write sizes on SMB1
● Ownership/Permissions info in stat() calls
● POSIX opens/creates
● POSIX locks

● Enabled by default if server supports them

● Can be manually disabled with “-o nounix”
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Ownership and Permissions

● Horribly confusing with cifs.ko

● 2 separate elements
● Display: concerns result of stat() type calls
● Enforcement: permissions checking

● Basic principles:
● Client displays permissions according to what it 

knows, and will sometimes enforce those 
permissions vs. local users

● Permissions are always enforced by server, 
according to the credentials used
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Ownership and Permissions Display

● With POSIX extensions: 
● ownership/mode displayed as they appear on server
● Might not make sense if UID/GIDs are mapped 

differently!

● Without POSIX extensions:
● UID/GID set to default owner on the mount.
● Mode set to file_mode/dir_mode mount options.
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cifsacl

● When updating inode info:
● Opens file
● Reads ACL and maps it to mode bits
● Maps SIDs to UID/GID (possible upcall)
● Closes file

● Should also use cifs.idmap program to translate 
SID <-> UID/GID.

● Mapping ACL to/from mode bits is lossy translation

● Horrible for performance (a lot of extra round trips to 
server, breaks oplocks, etc.)
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Ownership and Permissions Enforcement

● Historically, cifs.ko mounts used single set of creds

● All accesses used the mount credentials regardless 
of who was accessing the mount

● Client tries to enforce permissions according to local 
inode permissions, which are typically default 
ownership/permissions of the mount.

● Server will always enforce permissions based on 
mount credentials

● Result is a union of mount creds enforced by server 
and the local permissions enforced by client.
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Multiuser Mounts

● If multiple users are accessing the share, consider 
multiuser mount (-o multiuser)

● Allows users to access the mount with their own 
credentials:

● When non-root user accesses mount, build a new 
authenticated session to server based on UID

● Torn down after period of inactivity
● Currently, all authentication type must be same for 

all users (mount with krb5, need krb5 auth for all 
users)
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Multiuser Mounts (cont'd)

● With sec=krb5, just need a valid credcache (or 
keytab)

● With password-based auth methods, use the 
cifscreds program to stuff creds in keyring (v3.3+)

● Client-side permissions enforcement is disabled

● Without POSIX extensions or cifsacl, ownership is 
displayed as current accessing user
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Ownership and Permissions Mount Options

● These set the “default” ownership/permissions for 
mount:

● uid=

● gid=

● file_mode=

● dir_mode=

● Force client to disregard ownership presented by 
server:

● forceuid

● forcegid
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Ownership and Permissions Mount Options 
(cont'd)

● Disable client-side permissions checking entirely:
● noperm

● multiuser
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Backup Intent

● MS permissions model allows “backup programs” to 
access filesystem with extra permissions.

● Program must open files with extra flag 
(CREATE_OPEN_BACKUP_INTENT).

● Lookups/readdir need 
CIFS_SEARCH_BACKUP_SEARCH flag.

● Set these on a per-cred basis via:
● backupuid=

● backupgid=
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ACL setting and querying

● Can query/set ACLs using these commands:
● getcifsacl

● setcifsacl

● These use a special xattr to read/write raw ACL info

● In the future, may eventually be superseded by 
RichACL xattrs

● Mounting with -o cifsacl can change ACLs via 
mode-bit translation too (not recommended!)
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Identity Mapping

● The CIFS wire protocols deal with security 
identifiers (SIDs)

● POSIX uses UIDs and GIDs

● cifs-utils has tools that map between them:
● getcifsacl

● setcifsacl

● cifs.idmap

● Uses winbind to do the mapping

● New plugin interface in cifs-utils v5.9 (see 
cifsidmap.h for interface docs)

● sssd plugin is in the works
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Home Directory Access

● Common usage pattern is to set up access to home 
directories via cifs.ko, typically using krb5 auth

● Set up the credentials you want to use for root in 
keytab:

kadmin: addprinc ­randkey nobody

Principal "nobody@EXAMPLE.COM" created.
● Add that to keytab:

kadmin: ktadd nobody@EXAMPLE.COM
● Set up mount in /etc/fstab:

//server.example.com/home /home cifs 
sec=krb5,username=nobody,multiuser

mailto:nobody@EXAMPLE.COM
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Home Directory Access (notes)

● Generally want to “squash” root access to some 
non-privileged user on server.

● User can be very limited, but does need access to 
fetch attributes of the root of the share and any 
intermediate directories down to the root of mount

● Accesses by other users are done according to the 
credentials in their credcaches.

● Unauthenticated users get back EACCES on most 
syscalls
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Questions?
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