
Jeffrey Layton1

Getting the Most Out of the

Linux CIFS Client

Jeffrey Layton
Principal Software Engineer, Red Hat
SambaXP, April 10, 2013

Jeffrey Layton2

Agenda

● Overview of Linux CIFS

● SMB Version Selection

● Authentication

● Cache Coherency

● Locking Coherency

● Read / Write Performance

● Access Control

● Identity Mapping

Jeffrey Layton3

Overview of Linux CIFS

● The in-kernel filesystem that “speaks” SMB

● Samba-affiliated project, but it's not part of samba.

● Two main pieces:
● kernel filesystem (aka cifs.ko)

● Most of the code
● Distributed as part of the Linux kernel

● cifs-utils
● Small package of user space utilities
● Mount helpers and kernel callout programs

Jeffrey Layton4

Mounting a CIFS Filesystem

● Typical mount syntax:

mount //server.example.com/share \

 /mnt/cifs -o <options>

● cifs.ko supports a lot of options, most of which are
documented in mount.cifs(8).

● Strive to allow for sensible defaults, but it's not
always possible

Jeffrey Layton5

SMB Version Selection

● cifs.ko “speaks” SMB1 by default

● As of kernel v3.5, cifs.ko supports SMBv2.1 as an
experimental feature

● Also nominal support for 2.002 and 3.0, but the
implementations are not quite as robust

● Use the “vers=” mount option to select

● Not much advantage currently to using versions
higher than 1.0. (2.x needs support for multicredit
requests and compounds)

Jeffrey Layton6

Authentication

● sec=ntlm – (default pre-v3.7)

● sec=ntlmssp – (default post v3.7)

● sec=ntlmv2 (not well supported by servers)

● sec=none: Anonymous auth

● sec=krb5: Kerberos (requires upcall)

● Append “i” (for “integrity”) to mandate signed
sessions

Jeffrey Layton7

Kerberos mount upcall process

Jeffrey Layton8

Kerberos Mount Credentials

● Ticket used to handle the SMBs generated by
mount() syscall

● Governed by “-o cruid” option. (In really old
kernels, by the uid= option too, but that was a bug)

● These creds are always associated with the root
user

● In single-user mount, all SMBs use these
credentials regardless of who is accessing mount

● In multiuser mount, only root uses these creds

● Also possible to use keytab, use -o username= to
tell it what principal name to use

Jeffrey Layton9

Cache Coherency

● cache= option
● loose: uses NFSv3-like semantics. Only invalidate

caches when it appears that something has
changed.

● none: pagecache is not used. All reads and writes
are done through to the server. Much like an implicit
O_DIRECT. (aka forcedirectio on pre-v3.5 kernels)

● strict: stricter adherence to the protocol. Only use
the cache when an oplock is held. (aka strictcache
on pre-v3.5 kernels)

● Default in v3.7+ is strict, but in older kernels it was
loose.

Jeffrey Layton10

FSCache

● Allows you to cache data on local disk for
(sometimes) faster access...and less load on server.

● Fundamentally at odds with the standard CIFS
cache coherency model after a reboot

● Can also act as “swap for pagecache” -- alternate
way to get to data instead of going to server

● Only persistent across client reboots with
cache=loose

Jeffrey Layton11

Byte Range Locking Coherency

● Windows and POSIX locks don't mix well

● Windows locks are mandatory. Read and write
requests are blocked when there is a lock held.

● POSIX locks are advisory. Only block other lock
requests.

● POSIX byte range locks can split and merge.

● Windows locks “stack”

● Windows/Linux apps locking same files are very
problematic

● Client caches locks when it has an oplock

● Best to avoid applications that do complex locking

Jeffrey Layton12

Write Performance

● v3.0+ support async writes for cached requests
● Cached I/O is page-aligned

● V3.4+ for uncached requests

● Max wsize is also larger in v3.0+

● wsize= option is a starting point for negotiation

● SMB2 capped at 64k (no multicredit support)
non-POSIX POSIX

Default 64k 1M

Maximum 128k 16M

Jeffrey Layton13

Read Performance

● v3.2+ support async and larger reads into cache
● Page aligned I/Os due to doing through pagecache

● v3.5+ has support for uncached reads

● On 32-bit arch, you want v3.7+ (removed artificial
serialization to handle mapping highmem pages)

● SMB2 capped at 64k (no multicredit support).

non-POSIX POSIX

Default 60k 1M

Maximum 128k 16M

Jeffrey Layton14

Socket options

● Can direct the TCP port to use with port= option
● By default, client tries to use port 445 first and then

falls back to 139.
● Avoid port 139 if possible (kernel treats that port as

implicitly needing NetBIOS encapsulation), which
adds some overhead.

● Undocumented sockopt= option is now deprecated
in v3.8.

● TCP_NODELAY was only one implemented, and
never proved to have any effect in most cases.

● Kernel now corks/uncorks the socket when sending.

Jeffrey Layton15

POSIX Extensions

● Allows the “tunneling” of POSIX semantics over
CIFS protocol:

● Larger read/write sizes on SMB1
● Ownership/Permissions info in stat() calls
● POSIX opens/creates
● POSIX locks

● Enabled by default if server supports them

● Can be manually disabled with “-o nounix”

Jeffrey Layton16

Ownership and Permissions

● Horribly confusing with cifs.ko

● 2 separate elements
● Display: concerns result of stat() type calls
● Enforcement: permissions checking

● Basic principles:
● Client displays permissions according to what it

knows, and will sometimes enforce those
permissions vs. local users

● Permissions are always enforced by server,
according to the credentials used

Jeffrey Layton17

Ownership and Permissions Display

● With POSIX extensions:
● ownership/mode displayed as they appear on server
● Might not make sense if UID/GIDs are mapped

differently!

● Without POSIX extensions:
● UID/GID set to default owner on the mount.
● Mode set to file_mode/dir_mode mount options.

Jeffrey Layton18

cifsacl

● When updating inode info:
● Opens file
● Reads ACL and maps it to mode bits
● Maps SIDs to UID/GID (possible upcall)
● Closes file

● Should also use cifs.idmap program to translate
SID <-> UID/GID.

● Mapping ACL to/from mode bits is lossy translation

● Horrible for performance (a lot of extra round trips to
server, breaks oplocks, etc.)

Jeffrey Layton19

Ownership and Permissions Enforcement

● Historically, cifs.ko mounts used single set of creds

● All accesses used the mount credentials regardless
of who was accessing the mount

● Client tries to enforce permissions according to local
inode permissions, which are typically default
ownership/permissions of the mount.

● Server will always enforce permissions based on
mount credentials

● Result is a union of mount creds enforced by server
and the local permissions enforced by client.

Jeffrey Layton20

Multiuser Mounts

● If multiple users are accessing the share, consider
multiuser mount (-o multiuser)

● Allows users to access the mount with their own
credentials:

● When non-root user accesses mount, build a new
authenticated session to server based on UID

● Torn down after period of inactivity
● Currently, all authentication type must be same for

all users (mount with krb5, need krb5 auth for all
users)

Jeffrey Layton21

Multiuser Mounts (cont'd)

● With sec=krb5, just need a valid credcache (or
keytab)

● With password-based auth methods, use the
cifscreds program to stuff creds in keyring (v3.3+)

● Client-side permissions enforcement is disabled

● Without POSIX extensions or cifsacl, ownership is
displayed as current accessing user

Jeffrey Layton22

Ownership and Permissions Mount Options

● These set the “default” ownership/permissions for
mount:

● uid=

● gid=

● file_mode=

● dir_mode=

● Force client to disregard ownership presented by
server:

● forceuid

● forcegid

Jeffrey Layton23

Ownership and Permissions Mount Options
(cont'd)

● Disable client-side permissions checking entirely:
● noperm

● multiuser

Jeffrey Layton24

Backup Intent

● MS permissions model allows “backup programs” to
access filesystem with extra permissions.

● Program must open files with extra flag
(CREATE_OPEN_BACKUP_INTENT).

● Lookups/readdir need
CIFS_SEARCH_BACKUP_SEARCH flag.

● Set these on a per-cred basis via:
● backupuid=

● backupgid=

Jeffrey Layton25

ACL setting and querying

● Can query/set ACLs using these commands:
● getcifsacl

● setcifsacl

● These use a special xattr to read/write raw ACL info

● In the future, may eventually be superseded by
RichACL xattrs

● Mounting with -o cifsacl can change ACLs via
mode-bit translation too (not recommended!)

Jeffrey Layton26

Identity Mapping

● The CIFS wire protocols deal with security
identifiers (SIDs)

● POSIX uses UIDs and GIDs

● cifs-utils has tools that map between them:
● getcifsacl

● setcifsacl

● cifs.idmap

● Uses winbind to do the mapping

● New plugin interface in cifs-utils v5.9 (see
cifsidmap.h for interface docs)

● sssd plugin is in the works

Jeffrey Layton27

Home Directory Access

● Common usage pattern is to set up access to home
directories via cifs.ko, typically using krb5 auth

● Set up the credentials you want to use for root in
keytab:

kadmin: addprinc ­randkey nobody

Principal "nobody@EXAMPLE.COM" created.
● Add that to keytab:

kadmin: ktadd nobody@EXAMPLE.COM
● Set up mount in /etc/fstab:

//server.example.com/home /home cifs
sec=krb5,username=nobody,multiuser

mailto:nobody@EXAMPLE.COM

Jeffrey Layton28

Home Directory Access (notes)

● Generally want to “squash” root access to some
non-privileged user on server.

● User can be very limited, but does need access to
fetch attributes of the root of the share and any
intermediate directories down to the root of mount

● Accesses by other users are done according to the
credentials in their credcaches.

● Unauthenticated users get back EACCES on most
syscalls

Jeffrey Layton29

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

