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Normal System Introspection: 

 
§  iostat – tells about disk latency 

§  netstat – networking connections 

§  mpstat – cpu usage 

§  lockstat – locking stats and information 
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What is DTrace? 
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Philosophy of DTrace 

§  DTrace is production safe. 
§  DTrace has no impact when not in use. 
§  DTrace has very minimal impact when in use. 

–  If you ask for a ton of data, clearly there will be some impact. 

§  DTrace is more about asking questions: 
–  How often is a fcntl being called? 
–  What locks are being contended on? 
–  What system calls are being called?  By what applications? 
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Providers – What you can ask 

§  Providers: 
–  fbt 
–  usdt 
–  pid 
–  syscall 
–  profile 
–  tick 
–  And that’s just a few of them… 
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How do you ask questions? 

§  “D” – The language 

–  Providers to probes 
§  My development VM shows over 62,000 probes 

–  Specially constructed to have no loops 

–  Global variables 

–  Associative arrays 
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Example “one liners” 

§  syscall:::entry /execname==“smbd”/ { @[probefunc] = 
count() } 

§  profile-1001 { @[ustack()] = count() } 

§  profile-1001 { @[stack()] = count() } 

§  syscall::fcntl:entry /execname==“smbd”/ { ustack(); } 
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Flame Graphs 

§  Helps you visualize any stack counting type result. 

§  X axis: Probe count 

§  Y axis: The stack 

§  It makes more sense if you just see it… 
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Note for the following examples: 

§  Almost all of the data gathering was done on the real 
production boxes. 
–  Using the real production software + load. 

§  Minimized impact through the following techniques: 
–  Probing less used functions 
–  Probing for short durations 
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Example Case: “Too many system calls.” 

§  mpstat –a 1 shows ~4-5 million system calls a second. 

§  What are they? 

§  One-liner to find out: 
–  syscall:::entry {@[probefunc] = count()} 

[ other system calls, that have less calls ] 
readv     294245 
lseek     901852 
kill      1187757 
fcntl     2796337 
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Now what? 

§  fcntl is getting called an absurd amount. 
–  Note, it is getting called about twice as much as “kill”. 
–  Do we care? 

§  What is calling it? 

§  Can we fix it… 

§  syscall::fcntl:entry /execname==“smbd”/ { @[ustack()] = 
count() } 

§  Look at the flame graph! 
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How do we fix it? 

§  Look at the source of the calls. 
–  Many were asking “does the current process exist.” 
–  Samba is not allowed to be existential. 

§  But that wasn’t enough. 
–  fill_share_mode_lock. 

§  Robust Mutexes! 
–  Volker fixed this in part. 

§  serverid.index 
–  Removing all TDB access from this hot path. 
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How do we fix it, part 2. 

§  Remove the code via refactoring 
–  Volker + metze did this, in 4.0 and master 
–  We have not tested how effective this change is, yet. 
–  The serverid.index may help in addition to this refactoring. 

§  There is a secondary lock on locking.tdb 
–  Fixed via an existing smb.conf parameter. 
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Results After the mmap + smb.conf Fix: 

§  Before: 
[other less called system calls] 
readv     294245 
lseek     901852 
kill      1187757 
fcntl     2796337 
 

§  After: 
[other less called system calls] 
 fcntl    762954 
 stat    1236821 
 kill    2752993 
 lseek   3645825 
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The CPU is Maxed? 

§  The graphs are from all different sources 

§  But, they are just to help us target in on the real issue 
with DTrace 
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Why is the CPU Maxed? 
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Look at ops. 
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Look at Network Traffic 
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Look at Bandwidth 
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Are we locking too much? 
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Not due to NFS: 
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lockstat + other tools. 

§  lockstat –s 100 sleep 3 

§  (show data here) 
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Conclusion 

§  Stat is causing a problem 
–  Deep directory hierarchy 
–  Approximate value, at least 10%. 
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SMB2, Random Disconnect 

§  Server appears to be randomly disconnecting users 

§  Why? 

§  Added instrumentation to the server exit path 
–  Normal stack logging function function 
–  Also had samba output the “error status” 
–  NT_STATUS_NO_MEMORY?! 
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Why, NT_STATUS_NO_MEMORY? 

§  What returned ENOMEM/NT_STATUS_NO_MEMORY 
–  All signs point to writev 
–  man writev – it is an undocumented return 

§  Prove it is doing it 
–  syscall::writev:return /errno == ENOMEM && arg1== -1/ 

{ ustack(); } 
§  arg1 is always the return value of a “return” probe 
§  Note, this is “pseudo code” for the real code 

–  Wow, it is happening 

§  The fix was easy, once we knew what it was 
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Future directions with DTrace + Samba 

§  UDST (User-Level Statically Defined Tracing) 
–  Create a samba provider 

§  Initial areas of interest: 
–  smbd exit 
–  oplocks/leases 
–  Whatever else might interest us 

§  Overhead should be low/none 
–  Setting up the data for a probe can have cost 
–  There are ways around the issue 
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Now we should be able to: 
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Questions? 

? 
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Thank you for attending! 

! 
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Resources: 

§  DTrace resources: 
http://www.brendangregg.com/dtrace.html 
–  DTrace toolkit 
–  One-liners (great way to learn) 

 
§  Flame Graphs: 

http://dtrace.org/blogs/brendan/2011/12/16/flame-
graphs/ 

 


