
Clustered Samba performance analysis
and improvements
Christian Ambach / Mathias Dietz - IBM Research & Development

© 2011 IBM Corporation2

Christian Ambach and Mathias Dietz

 Working for IBM Research and Development in Mainz, Germany on the IBM SONAS product since 2008.

 Have experiences with Samba as part of the IBM SoFS offering since 2006 and the IBM OESV offering since 2003.

IBM SONAS - Scale Out Network Attached Storage

Modular high performance storage with massive scalability and high availability.

Supports multiple petabytes of storage for organizations that need billions of files in a single file system.

Based on Open Source technologies (Samba, CTDB, Linux, ...)

Link: http://www.ibm.com/systems/storage/network/sonas/

C
IF

S
N

F
S

F
T

P

Introduction

 Storage
Building Block

© 2011 IBM Corporation3

Agenda

Presenting various customer cases that we worked on in 2009 and 2010.

Customers are mostly running digital-media applications and were facing issues
with the performance of their CTDB cluster.

We will present

– the identified bottlenecks

– derived actions

– status of the fixes and improvements

© 2011 IBM Corporation4

Customer I

Visual effects company located in AP

Using Pixar rendering farm

Workload: Application scans of large directory structure to
see if a rendering job can be started

Problem:

– Customer used an AIX machine with CIFS server on it

– Directory scan finished in about 2 minutes

– New SONAS box took 5 minutes (two nodes, 120
harddisks)

Emulation in the development lab:

– Right-click folder in Windows Explorer and select
“Properties”

– Old machine took 6 min

– SONAS took 15 min

© 2011 IBM Corporation5

What is happening on the wire?

Windows recursively walks the directory structure

It uses FIND_FIRST2 to determine all children of the current directory

Before descending into a subdirectory, it issues a QUERY_PATH_INFO
request for the directory

For each subdirectory of the current directory, it calls FIND_FIRST2 and then
descends into each subdirectory found

© 2011 IBM Corporation6

Issue 1: lstat() processing of wildcards

When processing the FIND_FIRST2 requests (e.g. \customer\dir*), Samba
calls lstat() for the path including the *.

The file system sometimes takes an unusual long time to answer these
requests

– seems to be related to a cache miss when directory is entered first time

– lstat() calls for existing files are answered much quicker
stat("customer/<some more dirs>/*", 0x7fffa00527a0) = -1 ENOENT (No such file or directory) <0.171325>

stat("customer/<some more dirs>/*", 0x7fffa00527a0) = -1 ENOENT (No such file or directory) <0.388874>

stat("customer/<some more dirs>/f1.rib", {st_mode= ...}) = 0 <0.000053>

stat("customer/<some more dirs>/inst02.0027.rib", {st_mode= ...}) = 0 <0.000053>

Actions taken:

– Workaround: As * is an invalid file name in the CIFS protocol, we hacked
a filter into Samba that will identify lstat() calls ending with “/*” and returns
ENOENT instead of asking the file system

– Opened bug against file system to fix the long wrong response times for
non existent files

© 2011 IBM Corporation7

locking.tdb is very busy

When processing the FIND_FIRST2 and QUERY_PATH_INFO requests,
Samba needs to check if an object has the DELETE_ON_CLOSE flag set.

Entries with the flag set will be omitted from the FIND_FIRST2 results and
QUERY_PATH_INFO will be replied with DELETE_PENDING

So for each file, Samba does one look-up in locking.tdb

For each directory, two look-ups are done due to the two requests

Performance is slow due to two issues:

– Samba needs to fetch records twice from CTDB

– Records are not well distributed in the local TDB and across the cluster

For testing, we patched Samba to not make look-ups into locking.tdb for
FIND_FIRST2 and QUERY_PATH_INFO. This gave a dramatic speed-up, but
actually violates the CIFS protocol as files/directories pending deletion will not
be reported as such any more.

© 2011 IBM Corporation8

Issue 2: DMASTER role for empty records

In case the locking record Samba needs to look at is in the local TDB and the node is
the DMASTER for the record, Samba does not have to ask CTDB to fetch the record
from the cluster.

If the record cannot be found locally or the local node is not the DMASTER for the
record, Samba does an unlocked fetch call to CTDB to retrieve the record.

If no record in locking.tdb exists for an object (true for 99% of the cases in this
workload), CTDB will implicitly create an empty record on the requesting node and on
the regular LMASTER for the record and will assign the LMASTER to be the DMASTER
for this empty record.

When Samba needs to access the record a second time (for all QUERY_PATH_INFO
calls), most of the empty records are not in the local TDB and so Samba has to fetch
them a second time across the network. Only records for which the local node would be
the LMASTER can be found in the local TDB.

Workaround: make node creating new record the DMASTER

Solution: read-only locks in CTDB

© 2011 IBM Corporation9

CTDB read-only locks

Currently under design

Will allow multiple nodes to have a read-only copy of a record in their local
TDB.

In principle this is a caching protocol.

Nodes can request to get a read-only copy of a record from the DMASTER

DMASTER has a list of all nodes possessing read-only copies

Only the DMASTER can perform updates on the record

In case record gets updated or migrated, other nodes will be notified to
invalidate their local copy

During a recovery, local copies will be thrown away

© 2011 IBM Corporation10

Issue 3: Record distribution in (C)TDB

key for locking records in a cluster is based on inode numbers

inode numbers are very similar

tdb_hash() does a bad job distributing the entries among the hash buckets

Half of the hash buckets were unused in the local TDB

LMASTER assignment was also very uneven, only half of the nodes was used
for being LMASTER

Solution:

replace tdb_hash with jenkins hash

– balanced distribution of records among hash buckets in local TDB

– balanced LMASTER assignments for records in CTDB

© 2011 IBM Corporation11

CIFS versus SMB2

progress after 1 minute of directory scanning

© 2011 IBM Corporation12

Customer II

Movie rendering company located in India

Using Maya rendering software

Workload:

– At the same time, multiple users try to open the Maya project file in their 3D
modeling application for reading

– Customer uses a central Maya project file which contains links to the textures
and RIB files

– The Maya project file is also loaded at the beginning of the rendering process by
their rendering farm

Problem:

– Slow start-up of rendering application

– Some clients saw time-outs when accessing the project file

© 2011 IBM Corporation13

Issue 4: DMASTER Ping-Pong

When the same file is accessed through multiple cluster nodes, Samba will
need to check the record for the file in brlock.tdb on each read request.

This leads to many DMASTER migrations that put load on CTDB and increase
the latency.

© 2011 IBM Corporation14

Issue 4: DMASTER Ping-Pong

new dmaster

Clients

read the same file

CTDB Cluster

2. REQ_CALL

3. REQ_DMASTER

lmaster
dmaster

4. REPLY_DMASTER

1. REQ_CALL

new dmaster

CTDB Cluster
6. REQ_CALL

7. REQ_DMASTER
lmaster dmaster

8. REPLY_DMASTER

5. REQ_CALL

ping

pong

© 2011 IBM Corporation15

Issue 4: DMASTER Ping-Pong

Code changes made for the DMASTER for empty records might have made
things worse as DMASTER migration now happens on every fetch and not only
after the fifth consecutive fetch from the same node.

Workaround:

– Make sure all clients access the file through the same cluster node

Final solution:

– Implement CTDB read-only locks

© 2011 IBM Corporation16

Customer III

Customer from the industrial sector located in Germany

Workload:

– Research departments around the world storing data

– large Active Directory with many users which are member of many groups (>300)

Problem:

– Customer ran into time-outs and connection losses during session setup

– The timeouts only happen during the very first login of a user to the SONAS cluster

Initial Analysis:

– Creation of ID mappings for the user and groups took longer than the CIFS client
connect timeout

– If many new users access SONAS at the same time, some of them failed (time-out)

– The same happens if a user is in many groups - connection failed (time-out)

© 2011 IBM Corporation17

ID Mapping Performance in a cluster (idmap_tdb2)

Performance test of the idmap_tdb2 backend with multiple cluster nodes:

4 Nodes 3 Nodes 1 Node 1 Node Cache
00:00

01:12

02:24

03:36

04:48

06:00

For 1000 IDs

*4-Nodes=5:23 3-Nodes=5:20 1-Node=4:20 1-Node Cache=8s

Conclusion:
ID mapping performance was slow (~200 IDs per minute – cluster-wide!)
Creating ID mappings for 1000 IDs took >5 minutes.
Distributing the load across multiple cluster nodes is counter-productive.
Lookup for existing ID mappings is fast (8 seconds for 1000 IDs)

© 2011 IBM Corporation18

Issue 5: ID Mapping Performance in a cluster (idmap_tdb2)

Samba stores the ID mappings in a persistent TDB (idmap_tdb2) that is clustered by
CTDB and uses transactions to ensure the integrity.

Allocating an ID from the high water mark and actually writing the mapping was not a
single but two transactions.

A single transaction is started for each group where the user is member of.

Solutions:

– Provide a tool to pre-fill the ID map database

– Wrap “high water mark and actually writing the mapping” into a single transaction
(Samba 3.4.7)

– For user in many groups problem - map many SIDs to gids at once in one single
transaction (Samba 3.6)

– Implement new ID mapping module based on idmap_rid but with less configuration
overhead (idmap_autorid)

© 2011 IBM Corporation19

ID Mapping Performance in a cluster (idmap_tdb2)

After Samba improvements (3.2.1 vs 3.4.7 vs 3.6)

Other improvements:
Create ID mapping for all member groups in a single transaction (Samba 3.6)

4 Nodes 3 Nodes 1 Node 1 Node Cache
00:00

01:12

02:24

03:36

04:48

06:00

1000 IDs
1000 Ids Samba 3.4.7
1000 Ids Samba 3.6

© 2011 IBM Corporation20

idmap_autorid

combines the approaches of idmap_tdb and idmap_rid

idmap_tdb is the favorite backend but has some drawbacks

– it is non-deterministic: Ids are given on first-come, first-serve

– it uses a database to store the mappings and you should never loose this database

idmap_autorid applies the rid algorithm to all domains, but automatically defines ranges
for each domain in the forest instead of requiring manual configuration for each domain

– easy to configure: just one optional parameter

– no need to up Samba configuration when trusted domain is added

– deterministic mapping behavior

– fast operation

– mappings are easy to replicate to second cluster

Give it a try!

© 2011 IBM Corporation21

Metadata synchronization performance (vfs_syncops module)

Metadata operations (like mkdir,unlink,..) must be sync()'ed to disk immediately
to avoid potential data inconsistency problems on cluster node failover.

We use the Samba vfs_syncops module (which does a fsync() on the parent
directory)

Tridge and Ronnie did some benchmarking with dbench

Results:

– strace showed that most of cost is fsync()

– The various additions for clustered Samba are costing up to 2/3 of the
performance for this workload (which is heavy on meta-data ops).

w locking & syncops
w/o syncops

w/o posix locking & syncops

0

50

100

150

200

250

dbench

© 2011 IBM Corporation22

Metadata synchronization performance (vfs_syncops module)

Solution:

– Introduce new (internal) GPFS parameter

– GPFS will automatically commit all the metadata operations (mkdir, unlink,
etc.) if the new option is enabled.

– Metadata ops usually involve multiple objects, and often Samba won't
have explicitly opened these (e.g., two directories involved in a rename).
Hence, to commit a single metadata operation Samba would need to do
several opens, fsyncs and closes.

– vfs_syncops module used for data sync only (sync on close)

Performance improvements to be quantified

© 2011 IBM Corporation23

Fix Status

File system fix for wildcard stats

Filter out * stat calls in Samba
● Consider filtering this out cleanly in Samba code,

Jeremy seems to have already worked on that
Samba 3.6?

Make (C)TDB record distribution more balanced
CTDB 1.2.8

Fix DMASTER for empty records CTDB 1.2.14

Implement CTDB read-only locks CTDB 1.3?

Increase ID Map Performance Samba 3.6

Speed up metadata synchronisation
Samba 3.6
GPFS 3.3

© 2011 IBM Corporation24

	IBM Centennial Presentation Template
	Introduction
	Slide 3
	Slide 4
	Slide 5
	Paragraph
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

