
Monitoring Samba using the Application
Response Measurement Standard (ARM)

Sven Kubiak
University of Duisburg-Essen

1

Agenda

  Introduction

  Current development status

  Requirements on measuring Samba

  Application Response Measurement (ARM)

  Developing the Prototype

  Results

  Lessons learned

2

Introduction

  Talk is based on my Bachelor Thesis at the Institute for Computer
Science and Business Information Systems (ICB), University of
Duisburg-Essen, Prof. Dr. Müller-Clostermann

  In cooperation with ZRWest

  ZRWest is a data center for the “Deutsche
Rentenversicherung” (German pension fund)

  Infrastructure with 2000+ Clients
  Using Samba for their Branches

  Mainly as File- and Print Server

  Work in progress!!
3

Introduction

  ZRWest required to monitor their Samba Servers
  Service Level Agreement with Offices / End-Users

  Helpdesk Support

  Troubleshooting

 Questions that require answers (e.g.)
  How long does it take to load the profile of a user?

  How long does it take to mount a network drive?

  How long does it take to mount a printer?

  How long does it take to log on to a domain?

4

Current development status

 First step: Analyze and examine if it is possible to
combine Samba and ARM

 Second step: Analyzing SMB and developing a
prototype based on results of first step

 Third step: Implementation in test-environment

 Fourth step: Implementation in production-environment

5

Requirements on measuring Samba

  A monitoring solution for Samba which focus on
measuring end-to-end transactions per Client

  Currently using existing monitoring solutions (e.g. ISIS – An
Integration Samba Inspection Services – see sambaXP 08)
  Problem: Monitoring is mainly based on performance

analysis (CPU, RAM, etc.)

  Idea: Using the Application Response Measurement
Standard (ARM) and its concepts to measure Samba
features

6

Application Response Measurement

  ARM is an open standard published by the OpenGroup

  Was originally developed by IBM and Tivoli in 1996
  Is included in IBM Websphere and IBM Application Server (e.g.)

  API for performance analysis written in C
  Java (since Version 3.0)
  Current stable version 4.1
  Open-Source SDK available

  Used to gain an insight into the behavior of a (distributed) application
  Are transactions executed, if not, what are the reasons?
  How can one increase the performance of an application
  How long is the response time?
  Identifying bottlenecks in distributed Systems

7

Application Response Measurement

  Measurement of the runtime through the definition of
transaction points
  Simple start and stop calls in your application

  ARM-Calls are send to an ARM-Agent which does the analysis
  Agent sets timestamps
  Agent handle IDs

  Extend the information send to the agent
  Metrics (e.g. counters)
  Correlators (Parent-Child relationships)
  etc.

8

Application Response Measurement
(Very) simple Example

Load libarm

start_arm_transaction()

{Program}

stop_arm_transaction()

9

Application Response Measurement
Distributed Systems Example

Application A Application B ARM-Agent

Start Transaction

Start Transaction

Stop Transaction

Stop Transaktion

Tim
e

Request

Response

  Detailed measurement
of distributed systems

  App. A = Parent
transaction

  App. B = Child
transaction of App. A

  Example
  Runtime App. A: 2 Sec.

  Runtime App. B: 5 Sec.

  Total runtime: 7 Sec.

10

Developing the Prototype

  How to measure Samba features like mounting a network
drive?

  Idea: Measuring SMB-Commands during their process time
within Samba
  Pro: Complete measurement of a SMB-Command from entering until

leaving a SMB-Process

  Contra: When accessing Samba and requesting a feature, a high
number of SMB commands is exchanged (Overhead?)

  Identify specific SMB-Calls that mark the start and the end of a
Samba feature

  Analysis of network traffic was required

11

Developing the Prototype
Network Analysis

  Example: Mounting
a network drive

  A lot of SMB Calls

  First idea was to
measure all SMB
Calls
  Dropped that idea

very fast!

  Start at
SMBNegprot

  Stop at
SMBtdis

12

Developing the Prototype
Extending Samba

  ARM-API-Calls had to be implemented in the „right place“ in
the Samba source code

  Start with Samba main method
  server.c (smbd_process method)
  process.c (process_smb method)

  SMB Process starts a parent transaction
  All further SMB Calls are handled as Child Transaction

  Additional information (e.g. Client IP address) had to be
added to identify different Clients (more on that later)

13

Developing the Prototype
Implementation

  Libarm knows about
previous Client
connections

  Check for a specific
SMB Command in
libarm (passed from
smb-Deamon)

  Libarm decides when
to send start/stop Calls
to the ARM-Agent

  Why MySQL?
  Storing data on a

different Server
  Independent from

Analysis software

smb-
Deamon

libarm
ARM-Agent

(ARM-Logger)

ARM-Monitor

Samba

MySQL-
Database

ARM-Calls

Start/Stop

14

Developing the Prototype
Identifying different Clients

  ARM identifies each transaction with a unique ID
  But how can one identify different Clients during analysis?

  Idea: grab as much information from Samba that we can
  IP-Address
  Username
  PID
  etc.

  Used for Prototype: IP-Address
  Most suitable: all information

15

Results

  Prototype fulfilled our requirements

  Implementation requires little effort
  Few lines of code and some modification for compiling

  Main Problem: Finding the correct SMB Calls which
identify the start and the end of a specific Samba
features

  ARM measurements correspond with network analysis

  More benefit comes when adding ARM-Calls to multiple
Applications in your infrastructure

16

Results
Measurements

  Java-GUI (Prototype)
to access the
database

  Query the database
based on Client IP-
Address

  Transaction time
matches network
traffic

17

Results
Benefit in distributed Systems

18

  DX-Union (e.g.)

  Patch
Management

  License
Management

  Device
Management

Lessons learned

  Fine-tuning required
  Just analyzing SMB command is not sufficient enough for

the measurement of a specific Samba features

  A deeper look at the SMB Calls is required (e.g. Sub
Commands)

  Further Analysis required
  Scaling (Step three)

  Overhead (Step three)

19

Monitoring Samba using the Application
Response Measurement Standard (ARM)

Thank you for your attention!

Questions?

20

