
Monitoring Samba using the Application
Response Measurement Standard (ARM)

Sven Kubiak
University of Duisburg-Essen

1

Agenda

  Introduction

  Current development status

  Requirements on measuring Samba

  Application Response Measurement (ARM)

  Developing the Prototype

  Results

  Lessons learned

2

Introduction

  Talk is based on my Bachelor Thesis at the Institute for Computer
Science and Business Information Systems (ICB), University of
Duisburg-Essen, Prof. Dr. Müller-Clostermann

  In cooperation with ZRWest

  ZRWest is a data center for the “Deutsche
Rentenversicherung” (German pension fund)

  Infrastructure with 2000+ Clients
  Using Samba for their Branches

  Mainly as File- and Print Server

  Work in progress!!
3

Introduction

  ZRWest required to monitor their Samba Servers
  Service Level Agreement with Offices / End-Users

  Helpdesk Support

  Troubleshooting

 Questions that require answers (e.g.)
  How long does it take to load the profile of a user?

  How long does it take to mount a network drive?

  How long does it take to mount a printer?

  How long does it take to log on to a domain?

4

Current development status

 First step: Analyze and examine if it is possible to
combine Samba and ARM

 Second step: Analyzing SMB and developing a
prototype based on results of first step

 Third step: Implementation in test-environment

 Fourth step: Implementation in production-environment

5

Requirements on measuring Samba

  A monitoring solution for Samba which focus on
measuring end-to-end transactions per Client

  Currently using existing monitoring solutions (e.g. ISIS – An
Integration Samba Inspection Services – see sambaXP 08)
  Problem: Monitoring is mainly based on performance

analysis (CPU, RAM, etc.)

  Idea: Using the Application Response Measurement
Standard (ARM) and its concepts to measure Samba
features

6

Application Response Measurement

  ARM is an open standard published by the OpenGroup

  Was originally developed by IBM and Tivoli in 1996
  Is included in IBM Websphere and IBM Application Server (e.g.)

  API for performance analysis written in C
  Java (since Version 3.0)
  Current stable version 4.1
  Open-Source SDK available

  Used to gain an insight into the behavior of a (distributed) application
  Are transactions executed, if not, what are the reasons?
  How can one increase the performance of an application
  How long is the response time?
  Identifying bottlenecks in distributed Systems

7

Application Response Measurement

  Measurement of the runtime through the definition of
transaction points
  Simple start and stop calls in your application

  ARM-Calls are send to an ARM-Agent which does the analysis
  Agent sets timestamps
  Agent handle IDs

  Extend the information send to the agent
  Metrics (e.g. counters)
  Correlators (Parent-Child relationships)
  etc.

8

Application Response Measurement
(Very) simple Example

Load libarm

start_arm_transaction()

{Program}

stop_arm_transaction()

9

Application Response Measurement
Distributed Systems Example

Application A Application B ARM-Agent

Start Transaction

Start Transaction

Stop Transaction

Stop Transaktion

Tim
e

Request

Response

  Detailed measurement
of distributed systems

  App. A = Parent
transaction

  App. B = Child
transaction of App. A

  Example
  Runtime App. A: 2 Sec.

  Runtime App. B: 5 Sec.

  Total runtime: 7 Sec.

10

Developing the Prototype

  How to measure Samba features like mounting a network
drive?

  Idea: Measuring SMB-Commands during their process time
within Samba
  Pro: Complete measurement of a SMB-Command from entering until

leaving a SMB-Process

  Contra: When accessing Samba and requesting a feature, a high
number of SMB commands is exchanged (Overhead?)

  Identify specific SMB-Calls that mark the start and the end of a
Samba feature

  Analysis of network traffic was required

11

Developing the Prototype
Network Analysis

  Example: Mounting
a network drive

  A lot of SMB Calls

  First idea was to
measure all SMB
Calls
  Dropped that idea

very fast!

  Start at
SMBNegprot

  Stop at
SMBtdis

12

Developing the Prototype
Extending Samba

  ARM-API-Calls had to be implemented in the „right place“ in
the Samba source code

  Start with Samba main method
  server.c (smbd_process method)
  process.c (process_smb method)

  SMB Process starts a parent transaction
  All further SMB Calls are handled as Child Transaction

  Additional information (e.g. Client IP address) had to be
added to identify different Clients (more on that later)

13

Developing the Prototype
Implementation

  Libarm knows about
previous Client
connections

  Check for a specific
SMB Command in
libarm (passed from
smb-Deamon)

  Libarm decides when
to send start/stop Calls
to the ARM-Agent

  Why MySQL?
  Storing data on a

different Server
  Independent from

Analysis software

smb-
Deamon

libarm
ARM-Agent

(ARM-Logger)

ARM-Monitor

Samba

MySQL-
Database

ARM-Calls

Start/Stop

14

Developing the Prototype
Identifying different Clients

  ARM identifies each transaction with a unique ID
  But how can one identify different Clients during analysis?

  Idea: grab as much information from Samba that we can
  IP-Address
  Username
  PID
  etc.

  Used for Prototype: IP-Address
  Most suitable: all information

15

Results

  Prototype fulfilled our requirements

  Implementation requires little effort
  Few lines of code and some modification for compiling

  Main Problem: Finding the correct SMB Calls which
identify the start and the end of a specific Samba
features

  ARM measurements correspond with network analysis

  More benefit comes when adding ARM-Calls to multiple
Applications in your infrastructure

16

Results
Measurements

  Java-GUI (Prototype)
to access the
database

  Query the database
based on Client IP-
Address

  Transaction time
matches network
traffic

17

Results
Benefit in distributed Systems

18

  DX-Union (e.g.)

  Patch
Management

  License
Management

  Device
Management

Lessons learned

  Fine-tuning required
  Just analyzing SMB command is not sufficient enough for

the measurement of a specific Samba features

  A deeper look at the SMB Calls is required (e.g. Sub
Commands)

  Further Analysis required
  Scaling (Step three)

  Overhead (Step three)

19

Monitoring Samba using the Application
Response Measurement Standard (ARM)

Thank you for your attention!

Questions?

20

