Analyzing Open Source Code

April, 2009

David Maxwell
Coverity's Open Source Strategist

For
SambaXP 2009

Unofficial Earth Day Flag (public domain image)

Keywords: Awareness

A day where people make an effort to bring environmental issues to the forefront, to bring those issues front and centre in people's minds.

$60,000,000,000

€46.000.000.000

“Calculating the real cost of software defects” - Hewlett Packard Journal, William T. Ward, 1991 - $1,500 rework cost + $9,000 profit loss

$10,500

€8.073

“Calculating the real cost of software defects” - Hewlett Packard Journal, William T. Ward, 1991 - $1,500 rework cost + $9,000 profit loss

Agenda

	Background on the Scan

	Open Source Report 2008

	Self-Builds

	Rung 3

	Architectural Analysis

	Summary

Background on the Scan

Static Analysis includes

Path Simulation

Data Flow Analysis

False Path Pruning

	By understanding the control flow of code, and the data flow, contradictions can be identified
	Memory freed, then used as if not freed

	Lock request issued, while already holding same lock, or a contrary lock

	Function can return an edge-case value (negative, or NULL) and calling function uses return value unsafely, without checking first

	Multiplication performed, but inputs lead to arithmetic overflow

Background on the Scan

Under contract for

US Dept. Homeland Security

	Analyze Open Source codebases
	Static Analysis finds Quality and Security issues

	Provide access to the Open Source developers

	Developers fix identified issues

	Codebases become more resistant to attack, more stable, more reliable

> 8,500

“Calculating the real cost of software defects” - Hewlett Packard Journal, William T. Ward, 1991 - $1,500 rework cost + $9,000 profit loss

Carpentry is a much older trade / skill than software development.

The Carpenter's toolkit is largely unchanged in the last 6 centuries.

“By the 15th century carpenters used most of the tools that are found in a carpenter's toolbox today, although they were often simpler versions.” - Wikipedia

“Zimmermann” (German for carpenter)

Image licensed from stock photo service

Hansel and Gretel – public domain image from the German Post Office

Metaphor – trail of rocks, or breadcrumbs, refinement of techniques over time.

Software Tools

Version Control

Bug Trackers

Debuggers

Original Research

55 million LOC

250 open source projects

14,238 analysis runs

Nearly 10 billion LOC analyzed

Report on Open Source Software 2008

Let's Reconsider
some common beliefs
about good coding practices...

By looking at a lot of code,
and a lot of bugs

Function Length

	What makes a function ‘long’?

		A single, sequential set of operations
	Are those operations common elsewhere in the code?

	A large switch statement
	Protocol decoding is a common example

	A function with many different code paths
	Conditional execution – lots of if() statements

	Average function lengths in the Scan database ranged from

		Low of 14 lines

	High of 345 lines

	The longest average is almost 25x the shortest average

Defect Density/Function Length

Defect Count or Defect Density

	Defect Counts

		Absolute number of defects identified in a particular piece of code
	314 defects in a particular codebase

	Defect Density will be referred to many times during this session

		Number of defects per 1,000 lines of code
	1.0 = 1 defect in 1,000 lines of code

	0.5 = 1 defect in 2,000 lines of code

Overall Project Progress

Many developers actively use the Scan to improve their project’s code.
However, the improvement is not universal, some projects have introduced more defects than they have resolved over this time period.

There are many reasons for not using the available analysis information, but mostly just one good reason for using it – the developers care about the quality and security of their code

Sum under the curve – project averages started at 0.3 D / 1,000 lines now have reached an average of 0.25 D / 1,000 lines

Moving on, let's look into the frequency of different defect types

Overall Project Progress

Pssst... Samba's this one

Many developers actively use the Scan to improve their project’s code.
However, the improvement is not universal, some projects have introduced more defects than they have resolved over this time period.

There are many reasons for not using the available analysis information, but mostly just one good reason for using it – the developers care about the quality and security of their code

Sum under the curve – project averages started at 0.3 D / 1,000 lines now have reached an average of 0.25 D / 1,000 lines

Moving on, let's look into the frequency of different defect types

Frequency of Defects

0.21%
49
Use Before Test (negative)
0.31%
72
Buffer Overrun (dynamically allocated)
0.62%
144
Type and Allocation Size Mismatch
3.72%
859
Unsafe use of Returned Negative
5.50%
1,268
Uninitialized Values Read
5.85%
1,349
Unsafe use of Returned NULL
6.46%
1,491
Use After Free
6.14%
1,417
Buffer Overrun (statically allocated)
8.09%
1,867
Use Before Test (NULL)
9.76%
2,252
Unintentional Ignored Expressions
25.73%
5,852
Resource Leak
27.95%
6,448
NULL Pointer Dereference
Percentage
of Defects
Defect Type

Cyclomatic Complexity/Lines of Code

Talk about Linear / Logarithmic scales

91.94% correlation

Additional References

	Gartner

		Jim Duggan & Mark Driver

	Forrester Research

		Jeffrey Hammond

	IDC

		Melinda Ballou

	Voke

		Theresa Lanowitz

These are analysts that we have discussed the report with. If you have a relationship with their organizations, they are available to talk about it.

Summary Findings

	Open source benefits from static analysis

		Overall defect density dropped 16% over the past two years

	Prevalence of individual defect types

		Defect frequency may directly relate to frequency of types of operations

	False positives identified to date are a reasonably small percentage of results
	Currently below 14%

DHS Contract Expiry

Three year DHS contract is over

DHS Contract Expiry

Scan will continue, and continue to grow...

Sponsored by Coverity, and partners

Self-Builds

	Coverity's Analysis requires code be compiled

		Coverity has been managing builds for all Open Source projects in the Scan
	Changing version control systems

	Changing library dependencies

	Changing compiler dependencies

	Changing Environment dependencies

	Creates a bottleneck on Scan staff time

	Released to current Scan projects in Nov 2008

		Projects can now do their own builds, and submit them for analysis

Rung 3

	Conceptual Scan Ladder
	Open Source projects progress as they resolve defects

	Supports common analysis configuration on a given Rung
	Allows comparison and statistical analysis

	Rung 2 was announced January 2008

Rung 3

Rung 3 coming soon

New Prevent version 4.2

More Security checkers

Concurrency checkers

Boolean Satisfiability

Architectural Analysis

Data about high level architecture of code,
not low level code defects

Collected by the same
analysis mechanisms

Architectural Analysis

Architectural Analysis

Architectural Analysis

Architectural Analysis

	Will be available to Scan projects
	Starting with Rung 3

Image licensed from stock photo service

Frustration – story about database vendor's locking bug I had to prove existed.

Q & A

	Questions?

http://scan.coverity.com/
http://scan.coverity.com/report/
http://scan.coverity.com/arch/

David Maxwell
Open Source Strategist

dmaxwell@coverity.com

