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Samba4 WAFS Discourse

 The problem
 The solution
 Implementation
 All the other bits



  

The problem

 CIFS performs poorly over the internet
 Measureable in terms of:

 # seconds to save a file
 % idle bandwidth wasted
 Low ROI on bandwidth investment
 Users waste of even more time while waiting
 Cost of WAFS solutions



  

The Causes

 Low bandwidth
 High latency
 Chattiness

Nigella Lawson chatting instead of book signing.

I'll bet there's a long queue moving slowly.



  

Bandwidth as a cause

 LAN link speeds: 10 - 1000 Mb/s
 File transfer speeds  80 – 400Mb/s

 WAN link speeds: 300Kb/s – 10Mb/s
 Up to 30 times slower

Special antique low-bandwidth pen



  

Bandwidth as a cause

 robot pen from coolest-gadgets.com
 Will it help speed things up?



  

Latency as a cause

 LAN latency 2ms
 Theoretical 500 requests per second

 WAN latency 50 – 100ms
 Theoretical 10 – 20 requests per second
 A process needing 500 requests takes 50 seconds

 WAN at least 25 – 50 times slower than LAN
  Taking message size into account

means even slower due to lower bandwidth



  

Chattiness – the worst of both

 Most applications are synchronous
 CIFS client waits for file to open before reading
 Waits for read to finish before reading more
 Repeated requests for the same meta-data
 The problem can't be solved with a bigger pipe

 Chattiness / Poor CIFS pipelining
 latency adds up
 Under-utilisation of available bandwidth



  

Chattiness – the maths

 Request time

 SIZE
request

 / BW
upstream

 + LATENCY
upstream

 

 Response time

 SIZE
response

 / BW
downstream

 + LATENCY
downstream

 

 Total = TIME
request

 + TIME
response

 + LATENCY
server



  

Chattiness - examples

Request / Response Size / bytes

Count: 1000 Request: 64 Response: 4100

Combined total request response time in seconds

102400 10240 2048 1024 512
1 1 4 17 34 66

2 2 5 18 35 67

5 5 8 21 38 70

20 20 23 36 53 85

50 50 53 66 83 115

At 50ms latency a bandwidth increase of 2,000% decreases load time to about 50%

More bandwidth doesn't help much!

Symmetric Link Bandwidth Kbit/s
RTT/mS



  

Chattiness – the graphs
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The Solution

 Remove harms of chattiness
 Of course!

 Reduce latency with read-ahead
 Reduce bandwidth demands with compression

 Also reducing link contention



  

An opportunity

A device at each site to extend CIFS protocol



  

Read-ahead

 Done already, 
Jeeves?

 I trust that sir is 
satisfied?



  

Read-ahead

 Abolish RTT latency
 Response processed 

before related request
 Read ahead by

RTT * bandwidth
to get link speed
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Read-ahead

 File-read using full 
available bandwidth

 Latency still problem 
for folder browsing

 In early tests, read-
ahead on a 600Kb/s 
~50ms link reduced 
the time to read a file 
by 25%
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Read-ahead latency improvement

 With read-ahead the new apparent LAN-side 
latency is effectively:

 SIZE
request

 / BW
upstream

 – LATENCY
lan

  500Kb/s =~ 500bits per millisecond
 4Kbyte response takes 65ms
 With LAN latency of 2ms effective LAN latency is 

63ms at LAN bandwidth



  

Read-ahead vs Latency

Request / Response Size / bytes

Count: 1000 Request: 64 Response: 4100

Combined total request response time in seconds

102400 10240 2048 1024 512
1 1 4 17 34 66

2 2 5 18 35 67

5 5 8 21 38 70

20 20 23 36 53 85

50 50 53 66 83 115

Reducing latency to LAN levels makes a BIG difference even at moderate bandwidth

Symmetric Link Bandwidth Kbit/s
RTT/mS



  

Compression

 Increase effective 
bandwidth

 Zlib often gives 50% 
compression rates

 Custom dictionarys 
can give better 
compression



  

Read-ahead and Compression

Request / Response Size / bytes

Count: 1000 Request: 64 Response: 4100

Combined total request response time in seconds

102400 10240 2048 1024 512
1 1 4 17 34 66

2 2 5 18 35 67

5 5 8 21 38 70

20 20 23 36 53 85

50 50 53 66 83 115

Compression and read-ahead make great savings of

67% off

Symmetric Link Bandwidth Kbit/s
RTT/mS



  

LAN Speeds over the WAN

1.If the file is previously cached

2.If the cache can be cheaply validated on open
 Then READ operations are at

 LAN speeds
 LAN latency

 Validation-on-open strategy not simple
 Avoid processing unwanted cache
 Avoid extra latency on open



  

Caching

 Solves latency and bandwidth issues entirely
 Non-validated cache can help compression

 MD5 to validate cache
 Use cache contents as a dictionary
 Unroll rsync / rdiff
 Dynamic dictionary management



  

Caching-Compression

Request / Response Size / bytes

Count: 1000 Request: 64 Response: 4100

Combined total request response time in seconds

102400 10240 2048 1024 512
1 1 4 17 34 66

2 2 5 18 35 67

5 5 8 21 38 70

20 20 23 36 53 85

50 50 53 66 83 115

Caching and compression and read-ahead make great savings

95% off

Symmetric Link Bandwidth Kbit/s
RTT/mS

Read from cache
Compress 
from cache

Zlib compress Read-ahead



  

Cache Coherency

 A nasty headache, see Coda, Intermezzo, AFS
 Nobody wants to resolve conflicts anyway
 Oplocks and notifications to the rescue
 Cache validated while an oplock is held stays 

valid – well worth reading ahead in this case!
 Metadata can be cached when folder change 

notifications are registered – no more repeats
 All other requests to the server – but optimized



  

Other requirements

 Maintain user identity
 ACL's
 Permissions
 Ownerships
 Quotas

 Maintain locking
 Cache coherency



  

Samba4 platform benefits

 Samba4 maintains CIFS semantics
 Samba4 already has a CIFS proxy
 Samba4 integrates with AD trust system
 Kerberos supports delegated credentials
 Trust of proxies can be managed standard AD 

management tools or set when provisioning
 Proxies can read-ahead using users credentials
 There's a load of brains working on it already



  

Implementing the solution

 Based on Samba4 proxy module
 Keep caching engine seperate
 All reads requests consult a cache and validate 

from server where required
 All read responses stored in a cache
 Do writes hit the cache after completion?

 What if a read comes in the meantime?

 Meta data can be cached too
 oplock breaks and notifications invalidate cache



  

Deployment and Provisioning

 Directly access shares from the proxy
 Maybe DFS referrals could pick nearest proxy?



  

Implementing the solution

It all works together so well
in theory



  

Samba4 infrastructre

 Proof of concept very simple
 It's all there, it looked so easy right away
 Read-ahead and zlib easy to add to cifs_proxy 
 Code was well structured so I didn't have to get 

to grips with all of it.
 At first

 My first bug: oplock handling in cifs_proxy
 Took 3 months to get patched - exciting



  

Multiple proxies

 Extend share definition to match called name
[\\proxy-alias\share]

 Use additional SPN's for each proxied server
[\\local-accounts\secret]

server=accounts.realm.net

share=top_secret$

[\\local-games]

server=games.realm.net

[*]

server=main.realm.net



  

Implementing the solution

0xACE



  

Proxy – Proxy Communication

 New opcode? New nttrans?
 New ntioctl – 0xACE
 Ioctl gives the option of implementing natively in 

windows server, so I'm told
 Use the dcerpc NDR code to marshall RPC

 transport over ntioctl 
 which transports over nttrans

 Which transports over SMB
 Which transports over...

Lots of copying anyway!



  

How reads work

 Look for a pending read and attach to the 
callback handler as a read-fragment

 Read from cache and issue optimized reads
 Repeat until all mincount is satisfied
 Callback handlers re-assemble read buffer
 Make sure attached read-fragment isn't free'd 

by original caller before we've finished with it.
 Now I've got to stop excess simultanous reads!



  

Problems

 Client negotiates large write with proxy
Server negotiates small writes with proxy
Likewise for reads
 Simple request proxying won't work

 Requires fragmenting reads and writes and 
collating results. 

 What happens if a middle request fails?
 What happens if the server thinks we queued 

too many simultaneous fragments?



  

Attaching to existing requests

 talloc_referencing multiple handlers sticking 
onto each-others memory

 Changed whole async callback mechanism
 Callback chains to reverse map incoming 

responses – ntioctl, nttrans etc
 New meta-infrastructure that selects between 

proxy-proxy comms or proxy-server
 Will change again to avoid need for references



  

New callback mechanism

 Related calls typically use same smb_* struct
Not any more!

 Related calls now have different encapsulations
 smb_read as standard
 proxy_read uses NDR / NTIOCL / NTTRANS
 The encapsulator queue's a de-encapsulator
 So the caller gets an unpacked struct
 The first callback calls smb_receive()

 Sync or async have same handlers!



  

Simple cache

 Simple file-based linear extents
 Length
 Validated length
 Pending length

 No holes in cache
 Cache key is user + server + share + path
 Delete random cache content when full

Cache extent

Validated Invalid Pending
reads



  

Better Cache management

 Ideally fragments should be selected based on 
reimen polynomials
 rolling_checksum % frag_size_key == 0

 This could also be the fragment key
 to avoid the birthday problem, we probably want to 

negotiate a unique key between all caches

 Per-user file cache becomes index of fragments
 Duplicate data is stored only once
 Delete low value content when full



  

The pain of the blessed Samba

 nttrans and ioctl had various bugs
 multi-packet requests/responses 
 >64K requests responses
 Is >64K ntioctl allowed? Dunno

 I wasn't wanting to have to fix these!
 Forced acquaintance with code base and tools

 But at least I got 0xACE is my ntioctl
 Hope no-one else picks such a cool function id

They might, it's so cool; agghhh



  

Pain of rejection

 No-one likes DLIST_FIND

#define DLIST_FIND(list, result, test) \

do { \

  for ((result) = (list); \

        (result) && !(test); \

        (result) = (result)->next); \

} while (0)

DLIST_FIND(thingy->list; item; item->id==id);



  

The joy of acceptance

 Poor-mans debug_ctx()
Uses a DEBUG() scoped variable instead of a 
static variable.
 Compatible with samba3 debug_ctx()
 Wastes a lot of memory
 Works without DEBUG being thread-safe



  

The joy of acceptance

 Fix large request fixups in receive.c 
 Were taking wrong affect on non AND_X requests
 Allows >64K nttrans to be handled

 Fix OP_LOCK breaks on vfs_proxy
 smb_abort macro for talloc_get_type_abort 

 allows per-caller abort mechanism

 talloc_memdup_type also clones struct name



  

It works!
 Testers like it – saves time

 I'm not lying
 No longer feel let down or hurt by performance
 Or give up and play around while waiting
 Goodbye!
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