

The guy

Like magic...

 lots of hard work

mostly other peoples'

VFS layer
Kerberos & delegated

credential support
Samba generally

SambaXP Party

Samba4 WAFS Discourse

 The problem
 The solution
 Implementation
 All the other bits

The problem

 CIFS performs poorly over the internet
 Measureable in terms of:

 # seconds to save a file
 % idle bandwidth wasted
 Low ROI on bandwidth investment
 Users waste of even more time while waiting
 Cost of WAFS solutions

The Causes

 Low bandwidth
 High latency
 Chattiness

Nigella Lawson chatting instead of book signing.

I'll bet there's a long queue moving slowly.

Bandwidth as a cause

 LAN link speeds: 10 - 1000 Mb/s
 File transfer speeds 80 – 400Mb/s

 WAN link speeds: 300Kb/s – 10Mb/s
 Up to 30 times slower

Special antique low-bandwidth pen

Bandwidth as a cause

 robot pen from coolest-gadgets.com
 Will it help speed things up?

Latency as a cause

 LAN latency 2ms
 Theoretical 500 requests per second

 WAN latency 50 – 100ms
 Theoretical 10 – 20 requests per second
 A process needing 500 requests takes 50 seconds

 WAN at least 25 – 50 times slower than LAN
 Taking message size into account

means even slower due to lower bandwidth

Chattiness – the worst of both

 Most applications are synchronous
 CIFS client waits for file to open before reading
 Waits for read to finish before reading more
 Repeated requests for the same meta-data
 The problem can't be solved with a bigger pipe

 Chattiness / Poor CIFS pipelining
 latency adds up
 Under-utilisation of available bandwidth

Chattiness – the maths

 Request time

 SIZE
request

 / BW
upstream

 + LATENCY
upstream

 Response time

 SIZE
response

 / BW
downstream

 + LATENCY
downstream

 Total = TIME
request

 + TIME
response

 + LATENCY
server

Chattiness - examples

Request / Response Size / bytes

Count: 1000 Request: 64 Response: 4100

Combined total request response time in seconds

102400 10240 2048 1024 512
1 1 4 17 34 66

2 2 5 18 35 67

5 5 8 21 38 70

20 20 23 36 53 85

50 50 53 66 83 115

At 50ms latency a bandwidth increase of 2,000% decreases load time to about 50%

More bandwidth doesn't help much!

Symmetric Link Bandwidth Kbit/s
RTT/mS

Chattiness – the graphs

1 ms 2 ms 5 ms 20 ms 50 ms

0

20

40

60

80

100

120

100Mb/s

10Mb/s

2Mb/s

1Mb/s

512Kb/s

100Mb/s
10Mb/s
2Mb/s
1Mb/s
512Kb/s

The Solution

 Remove harms of chattiness
 Of course!

 Reduce latency with read-ahead
 Reduce bandwidth demands with compression

 Also reducing link contention

An opportunity

A device at each site to extend CIFS protocol

Read-ahead

 Done already,
Jeeves?

 I trust that sir is
satisfied?

Read-ahead

 Abolish RTT latency
 Response processed

before related request
 Read ahead by

RTT * bandwidth
to get link speed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Regular CIFS

Regular
CIFS

Read-
ahead

Read-ahead

 File-read using full
available bandwidth

 Latency still problem
for folder browsing

 In early tests, read-
ahead on a 600Kb/s
~50ms link reduced
the time to read a file
by 25%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Regular CIFS

Regular
CIFS

Read-
ahead

Read-ahead latency improvement

 With read-ahead the new apparent LAN-side
latency is effectively:

 SIZE
request

 / BW
upstream

 – LATENCY
lan

 500Kb/s =~ 500bits per millisecond
 4Kbyte response takes 65ms
 With LAN latency of 2ms effective LAN latency is

63ms at LAN bandwidth

Read-ahead vs Latency

Request / Response Size / bytes

Count: 1000 Request: 64 Response: 4100

Combined total request response time in seconds

102400 10240 2048 1024 512
1 1 4 17 34 66

2 2 5 18 35 67

5 5 8 21 38 70

20 20 23 36 53 85

50 50 53 66 83 115

Reducing latency to LAN levels makes a BIG difference even at moderate bandwidth

Symmetric Link Bandwidth Kbit/s
RTT/mS

Compression

 Increase effective
bandwidth

 Zlib often gives 50%
compression rates

 Custom dictionarys
can give better
compression

Read-ahead and Compression

Request / Response Size / bytes

Count: 1000 Request: 64 Response: 4100

Combined total request response time in seconds

102400 10240 2048 1024 512
1 1 4 17 34 66

2 2 5 18 35 67

5 5 8 21 38 70

20 20 23 36 53 85

50 50 53 66 83 115

Compression and read-ahead make great savings of

67% off

Symmetric Link Bandwidth Kbit/s
RTT/mS

LAN Speeds over the WAN

1.If the file is previously cached

2.If the cache can be cheaply validated on open
 Then READ operations are at

 LAN speeds
 LAN latency

 Validation-on-open strategy not simple
 Avoid processing unwanted cache
 Avoid extra latency on open

Caching

 Solves latency and bandwidth issues entirely
 Non-validated cache can help compression

 MD5 to validate cache
 Use cache contents as a dictionary
 Unroll rsync / rdiff
 Dynamic dictionary management

Caching-Compression

Request / Response Size / bytes

Count: 1000 Request: 64 Response: 4100

Combined total request response time in seconds

102400 10240 2048 1024 512
1 1 4 17 34 66

2 2 5 18 35 67

5 5 8 21 38 70

20 20 23 36 53 85

50 50 53 66 83 115

Caching and compression and read-ahead make great savings

95% off

Symmetric Link Bandwidth Kbit/s
RTT/mS

Read from cache
Compress
from cache

Zlib compress Read-ahead

Cache Coherency

 A nasty headache, see Coda, Intermezzo, AFS
 Nobody wants to resolve conflicts anyway
 Oplocks and notifications to the rescue
 Cache validated while an oplock is held stays

valid – well worth reading ahead in this case!
 Metadata can be cached when folder change

notifications are registered – no more repeats
 All other requests to the server – but optimized

Other requirements

 Maintain user identity
 ACL's
 Permissions
 Ownerships
 Quotas

 Maintain locking
 Cache coherency

Samba4 platform benefits

 Samba4 maintains CIFS semantics
 Samba4 already has a CIFS proxy
 Samba4 integrates with AD trust system
 Kerberos supports delegated credentials
 Trust of proxies can be managed standard AD

management tools or set when provisioning
 Proxies can read-ahead using users credentials
 There's a load of brains working on it already

Implementing the solution

 Based on Samba4 proxy module
 Keep caching engine seperate
 All reads requests consult a cache and validate

from server where required
 All read responses stored in a cache
 Do writes hit the cache after completion?

 What if a read comes in the meantime?

 Meta data can be cached too
 oplock breaks and notifications invalidate cache

Deployment and Provisioning

 Directly access shares from the proxy
 Maybe DFS referrals could pick nearest proxy?

Implementing the solution

It all works together so well
in theory

Samba4 infrastructre

 Proof of concept very simple
 It's all there, it looked so easy right away
 Read-ahead and zlib easy to add to cifs_proxy
 Code was well structured so I didn't have to get

to grips with all of it.
 At first

 My first bug: oplock handling in cifs_proxy
 Took 3 months to get patched - exciting

Multiple proxies

 Extend share definition to match called name
[\\proxy-alias\share]

 Use additional SPN's for each proxied server
[\\local-accounts\secret]

server=accounts.realm.net

share=top_secret$

[\\local-games]

server=games.realm.net

[*]

server=main.realm.net

Implementing the solution

0xACE

Proxy – Proxy Communication

 New opcode? New nttrans?
 New ntioctl – 0xACE
 Ioctl gives the option of implementing natively in

windows server, so I'm told
 Use the dcerpc NDR code to marshall RPC

 transport over ntioctl
 which transports over nttrans

 Which transports over SMB
 Which transports over...

Lots of copying anyway!

How reads work

 Look for a pending read and attach to the
callback handler as a read-fragment

 Read from cache and issue optimized reads
 Repeat until all mincount is satisfied
 Callback handlers re-assemble read buffer
 Make sure attached read-fragment isn't free'd

by original caller before we've finished with it.
 Now I've got to stop excess simultanous reads!

Problems

 Client negotiates large write with proxy
Server negotiates small writes with proxy
Likewise for reads
 Simple request proxying won't work

 Requires fragmenting reads and writes and
collating results.

 What happens if a middle request fails?
 What happens if the server thinks we queued

too many simultaneous fragments?

Attaching to existing requests

 talloc_referencing multiple handlers sticking
onto each-others memory

 Changed whole async callback mechanism
 Callback chains to reverse map incoming

responses – ntioctl, nttrans etc
 New meta-infrastructure that selects between

proxy-proxy comms or proxy-server
 Will change again to avoid need for references

New callback mechanism

 Related calls typically use same smb_* struct
Not any more!

 Related calls now have different encapsulations
 smb_read as standard
 proxy_read uses NDR / NTIOCL / NTTRANS
 The encapsulator queue's a de-encapsulator
 So the caller gets an unpacked struct
 The first callback calls smb_receive()

 Sync or async have same handlers!

Simple cache

 Simple file-based linear extents
 Length
 Validated length
 Pending length

 No holes in cache
 Cache key is user + server + share + path
 Delete random cache content when full

Cache extent

Validated Invalid Pending
reads

Better Cache management

 Ideally fragments should be selected based on
reimen polynomials
 rolling_checksum % frag_size_key == 0

 This could also be the fragment key
 to avoid the birthday problem, we probably want to

negotiate a unique key between all caches

 Per-user file cache becomes index of fragments
 Duplicate data is stored only once
 Delete low value content when full

The pain of the blessed Samba

 nttrans and ioctl had various bugs
 multi-packet requests/responses
 >64K requests responses
 Is >64K ntioctl allowed? Dunno

 I wasn't wanting to have to fix these!
 Forced acquaintance with code base and tools

 But at least I got 0xACE is my ntioctl
 Hope no-one else picks such a cool function id

They might, it's so cool; agghhh

Pain of rejection

 No-one likes DLIST_FIND

#define DLIST_FIND(list, result, test) \

do { \

 for ((result) = (list); \

 (result) && !(test); \

 (result) = (result)->next); \

} while (0)

DLIST_FIND(thingy->list; item; item->id==id);

The joy of acceptance

 Poor-mans debug_ctx()
Uses a DEBUG() scoped variable instead of a
static variable.
 Compatible with samba3 debug_ctx()
 Wastes a lot of memory
 Works without DEBUG being thread-safe

The joy of acceptance

 Fix large request fixups in receive.c
 Were taking wrong affect on non AND_X requests
 Allows >64K nttrans to be handled

 Fix OP_LOCK breaks on vfs_proxy
 smb_abort macro for talloc_get_type_abort

 allows per-caller abort mechanism

 talloc_memdup_type also clones struct name

It works!
 Testers like it – saves time

 I'm not lying
 No longer feel let down or hurt by performance
 Or give up and play around while waiting
 Goodbye!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

