

The guy

Like magic...

 lots of hard work

mostly other peoples'

VFS layer
Kerberos & delegated

credential support
Samba generally

SambaXP Party

Samba4 WAFS Discourse

 The problem
 The solution
 Implementation
 All the other bits

The problem

 CIFS performs poorly over the internet
 Measureable in terms of:

 # seconds to save a file
 % idle bandwidth wasted
 Low ROI on bandwidth investment
 Users waste of even more time while waiting
 Cost of WAFS solutions

The Causes

 Low bandwidth
 High latency
 Chattiness

Nigella Lawson chatting instead of book signing.

I'll bet there's a long queue moving slowly.

Bandwidth as a cause

 LAN link speeds: 10 - 1000 Mb/s
 File transfer speeds 80 – 400Mb/s

 WAN link speeds: 300Kb/s – 10Mb/s
 Up to 30 times slower

Special antique low-bandwidth pen

Bandwidth as a cause

 robot pen from coolest-gadgets.com
 Will it help speed things up?

Latency as a cause

 LAN latency 2ms
 Theoretical 500 requests per second

 WAN latency 50 – 100ms
 Theoretical 10 – 20 requests per second
 A process needing 500 requests takes 50 seconds

 WAN at least 25 – 50 times slower than LAN
 Taking message size into account

means even slower due to lower bandwidth

Chattiness – the worst of both

 Most applications are synchronous
 CIFS client waits for file to open before reading
 Waits for read to finish before reading more
 Repeated requests for the same meta-data
 The problem can't be solved with a bigger pipe

 Chattiness / Poor CIFS pipelining
 latency adds up
 Under-utilisation of available bandwidth

Chattiness – the maths

 Request time

 SIZE
request

 / BW
upstream

 + LATENCY
upstream

 Response time

 SIZE
response

 / BW
downstream

 + LATENCY
downstream

 Total = TIME
request

 + TIME
response

 + LATENCY
server

Chattiness - examples

Request / Response Size / bytes

Count: 1000 Request: 64 Response: 4100

Combined total request response time in seconds

102400 10240 2048 1024 512
1 1 4 17 34 66

2 2 5 18 35 67

5 5 8 21 38 70

20 20 23 36 53 85

50 50 53 66 83 115

At 50ms latency a bandwidth increase of 2,000% decreases load time to about 50%

More bandwidth doesn't help much!

Symmetric Link Bandwidth Kbit/s
RTT/mS

Chattiness – the graphs

1 ms 2 ms 5 ms 20 ms 50 ms

0

20

40

60

80

100

120

100Mb/s

10Mb/s

2Mb/s

1Mb/s

512Kb/s

100Mb/s
10Mb/s
2Mb/s
1Mb/s
512Kb/s

The Solution

 Remove harms of chattiness
 Of course!

 Reduce latency with read-ahead
 Reduce bandwidth demands with compression

 Also reducing link contention

An opportunity

A device at each site to extend CIFS protocol

Read-ahead

 Done already,
Jeeves?

 I trust that sir is
satisfied?

Read-ahead

 Abolish RTT latency
 Response processed

before related request
 Read ahead by

RTT * bandwidth
to get link speed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Regular CIFS

Regular
CIFS

Read-
ahead

Read-ahead

 File-read using full
available bandwidth

 Latency still problem
for folder browsing

 In early tests, read-
ahead on a 600Kb/s
~50ms link reduced
the time to read a file
by 25%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Regular CIFS

Regular
CIFS

Read-
ahead

Read-ahead latency improvement

 With read-ahead the new apparent LAN-side
latency is effectively:

 SIZE
request

 / BW
upstream

 – LATENCY
lan

 500Kb/s =~ 500bits per millisecond
 4Kbyte response takes 65ms
 With LAN latency of 2ms effective LAN latency is

63ms at LAN bandwidth

Read-ahead vs Latency

Request / Response Size / bytes

Count: 1000 Request: 64 Response: 4100

Combined total request response time in seconds

102400 10240 2048 1024 512
1 1 4 17 34 66

2 2 5 18 35 67

5 5 8 21 38 70

20 20 23 36 53 85

50 50 53 66 83 115

Reducing latency to LAN levels makes a BIG difference even at moderate bandwidth

Symmetric Link Bandwidth Kbit/s
RTT/mS

Compression

 Increase effective
bandwidth

 Zlib often gives 50%
compression rates

 Custom dictionarys
can give better
compression

Read-ahead and Compression

Request / Response Size / bytes

Count: 1000 Request: 64 Response: 4100

Combined total request response time in seconds

102400 10240 2048 1024 512
1 1 4 17 34 66

2 2 5 18 35 67

5 5 8 21 38 70

20 20 23 36 53 85

50 50 53 66 83 115

Compression and read-ahead make great savings of

67% off

Symmetric Link Bandwidth Kbit/s
RTT/mS

LAN Speeds over the WAN

1.If the file is previously cached

2.If the cache can be cheaply validated on open
 Then READ operations are at

 LAN speeds
 LAN latency

 Validation-on-open strategy not simple
 Avoid processing unwanted cache
 Avoid extra latency on open

Caching

 Solves latency and bandwidth issues entirely
 Non-validated cache can help compression

 MD5 to validate cache
 Use cache contents as a dictionary
 Unroll rsync / rdiff
 Dynamic dictionary management

Caching-Compression

Request / Response Size / bytes

Count: 1000 Request: 64 Response: 4100

Combined total request response time in seconds

102400 10240 2048 1024 512
1 1 4 17 34 66

2 2 5 18 35 67

5 5 8 21 38 70

20 20 23 36 53 85

50 50 53 66 83 115

Caching and compression and read-ahead make great savings

95% off

Symmetric Link Bandwidth Kbit/s
RTT/mS

Read from cache
Compress
from cache

Zlib compress Read-ahead

Cache Coherency

 A nasty headache, see Coda, Intermezzo, AFS
 Nobody wants to resolve conflicts anyway
 Oplocks and notifications to the rescue
 Cache validated while an oplock is held stays

valid – well worth reading ahead in this case!
 Metadata can be cached when folder change

notifications are registered – no more repeats
 All other requests to the server – but optimized

Other requirements

 Maintain user identity
 ACL's
 Permissions
 Ownerships
 Quotas

 Maintain locking
 Cache coherency

Samba4 platform benefits

 Samba4 maintains CIFS semantics
 Samba4 already has a CIFS proxy
 Samba4 integrates with AD trust system
 Kerberos supports delegated credentials
 Trust of proxies can be managed standard AD

management tools or set when provisioning
 Proxies can read-ahead using users credentials
 There's a load of brains working on it already

Implementing the solution

 Based on Samba4 proxy module
 Keep caching engine seperate
 All reads requests consult a cache and validate

from server where required
 All read responses stored in a cache
 Do writes hit the cache after completion?

 What if a read comes in the meantime?

 Meta data can be cached too
 oplock breaks and notifications invalidate cache

Deployment and Provisioning

 Directly access shares from the proxy
 Maybe DFS referrals could pick nearest proxy?

Implementing the solution

It all works together so well
in theory

Samba4 infrastructre

 Proof of concept very simple
 It's all there, it looked so easy right away
 Read-ahead and zlib easy to add to cifs_proxy
 Code was well structured so I didn't have to get

to grips with all of it.
 At first

 My first bug: oplock handling in cifs_proxy
 Took 3 months to get patched - exciting

Multiple proxies

 Extend share definition to match called name
[\\proxy-alias\share]

 Use additional SPN's for each proxied server
[\\local-accounts\secret]

server=accounts.realm.net

share=top_secret$

[\\local-games]

server=games.realm.net

[*]

server=main.realm.net

Implementing the solution

0xACE

Proxy – Proxy Communication

 New opcode? New nttrans?
 New ntioctl – 0xACE
 Ioctl gives the option of implementing natively in

windows server, so I'm told
 Use the dcerpc NDR code to marshall RPC

 transport over ntioctl
 which transports over nttrans

 Which transports over SMB
 Which transports over...

Lots of copying anyway!

How reads work

 Look for a pending read and attach to the
callback handler as a read-fragment

 Read from cache and issue optimized reads
 Repeat until all mincount is satisfied
 Callback handlers re-assemble read buffer
 Make sure attached read-fragment isn't free'd

by original caller before we've finished with it.
 Now I've got to stop excess simultanous reads!

Problems

 Client negotiates large write with proxy
Server negotiates small writes with proxy
Likewise for reads
 Simple request proxying won't work

 Requires fragmenting reads and writes and
collating results.

 What happens if a middle request fails?
 What happens if the server thinks we queued

too many simultaneous fragments?

Attaching to existing requests

 talloc_referencing multiple handlers sticking
onto each-others memory

 Changed whole async callback mechanism
 Callback chains to reverse map incoming

responses – ntioctl, nttrans etc
 New meta-infrastructure that selects between

proxy-proxy comms or proxy-server
 Will change again to avoid need for references

New callback mechanism

 Related calls typically use same smb_* struct
Not any more!

 Related calls now have different encapsulations
 smb_read as standard
 proxy_read uses NDR / NTIOCL / NTTRANS
 The encapsulator queue's a de-encapsulator
 So the caller gets an unpacked struct
 The first callback calls smb_receive()

 Sync or async have same handlers!

Simple cache

 Simple file-based linear extents
 Length
 Validated length
 Pending length

 No holes in cache
 Cache key is user + server + share + path
 Delete random cache content when full

Cache extent

Validated Invalid Pending
reads

Better Cache management

 Ideally fragments should be selected based on
reimen polynomials
 rolling_checksum % frag_size_key == 0

 This could also be the fragment key
 to avoid the birthday problem, we probably want to

negotiate a unique key between all caches

 Per-user file cache becomes index of fragments
 Duplicate data is stored only once
 Delete low value content when full

The pain of the blessed Samba

 nttrans and ioctl had various bugs
 multi-packet requests/responses
 >64K requests responses
 Is >64K ntioctl allowed? Dunno

 I wasn't wanting to have to fix these!
 Forced acquaintance with code base and tools

 But at least I got 0xACE is my ntioctl
 Hope no-one else picks such a cool function id

They might, it's so cool; agghhh

Pain of rejection

 No-one likes DLIST_FIND

#define DLIST_FIND(list, result, test) \

do { \

 for ((result) = (list); \

 (result) && !(test); \

 (result) = (result)->next); \

} while (0)

DLIST_FIND(thingy->list; item; item->id==id);

The joy of acceptance

 Poor-mans debug_ctx()
Uses a DEBUG() scoped variable instead of a
static variable.
 Compatible with samba3 debug_ctx()
 Wastes a lot of memory
 Works without DEBUG being thread-safe

The joy of acceptance

 Fix large request fixups in receive.c
 Were taking wrong affect on non AND_X requests
 Allows >64K nttrans to be handled

 Fix OP_LOCK breaks on vfs_proxy
 smb_abort macro for talloc_get_type_abort

 allows per-caller abort mechanism

 talloc_memdup_type also clones struct name

It works!
 Testers like it – saves time

 I'm not lying
 No longer feel let down or hurt by performance
 Or give up and play around while waiting
 Goodbye!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

