
Virtual file system 
extensions in 
Samba 3.2

Alexander Bokovoy
ab@samba.org
Samba Team

mailto:ab@samba.org


#2

Happy climbing!



#3

Samba Virtual File System layer
• Started in April 1999 by Tim Potter as an abstraction layer
• Included 21 operation (and an initialization function)

• Allowed only one module to be loaded dynamically

• Multiple modules are supported since July 2002

• Number of operations has grown to 103 by 2008
• Relations between operations are no longer easy to 
understand and implement

• Source code analysis is now mandatory for any VFS module 
developer (if you want your module to work)



#4

Analyzing VFS layer
● Samba 3.2 VFS layer consists of:

➢ Definition:
 include/vfs.h – constants and structures
 include/vfs_macros.h – macro definitions to simplify 

accessing VFS structures
 All structures seen by smbd are accessible from vfs 

modules
➢ Implementation:

 smbd/vfs.c – main driver and basic helpers
➢ In-tree modules:

 modules/vfs_default.c – default implementation for POSIX-
compatible file systems

 modules/vfs_*.c – various modules to look for examples



#5

Analyzing VFS layer II

• Samba Team uses git for managing source code
➢ Git features for a third-party developer:

 Git repository contains all the history and branches
 It is possible to do extensive forensic analysis locally

➢ Important git commands for a VFS developer:
 git log <version or sha-1> source/include/vfs*

 Gives you all history on VFS layer public API since 1999
 git diff|log <version1>..<version2> source/include/vfs*

 Shows difference in VFS public API between versions
 gitk <version or sha-1> source/include/vfs*

 Gives you nice visual view of change sets



#6

Analyzing VFS between 3.0.28 and 3.2

• gitk release-3-0-28..HEAD source/include/vfs*.h



#7

From 3.0.28 towards 3.2

• Major changes in VFS API:
➢ License update: GNU Public License v3
➢ 8 file-related operations added

➢ File system capabilities reporting with 
fs_capabilities()

➢ recvfile() in addition to a sendfile()
➢ lchown()
➢ file_id_create()
➢ streaminfo()
➢ aio_force()
➢ is_offline()
➢ set_offline()



#8

From 3.0.28 towards 3.2 II

• Major changes in VFS API (continued):
➢ C structure and type changes

➢ BOOL is gone, welcome bool
➢ Removal of redundant arguments:

➢ File descriptors are part of files_struct (fsp), 
➢ 'int fd' argument has gone from 26 of file-related 

functions



#9

New VFS operations: fs_capabilities()

• File system capabilities
➢ uint32_t fs_capabilities(struct 
vfs_handle_struct *handle);

➢ Called once during connection setup
➢ Result is used for filling in the conn->fs_capabilities
➢ Flags aren't changed after that, only checked

➢ If your module extends not replaces the file system 
behavior, always use SMB_VFS_LAYER_TRANSPARENT for 
the fs_capabilities() operation



#10

File system capabilities
➢ FILE_CASE_SENSITIVE_SEARCH
➢ FILE_CASE_PRESERVED_NAMES
➢ FILE_UNICODE_ON_DISK
➢ FILE_PERSISTENT_ACLS
➢ FILE_FILE_COMPRESSION
➢ FILE_VOLUME_QUOTAS
➢ FILE_SUPPORTS_SPARSE_FILES
➢ FILE_SUPPORTS_REPARSE_POINTS
➢ FILE_SUPPORTS_REMOTE_STORAGE
➢ FS_LFN_APIS
➢ FILE_VOLUME_IS_COMPRESSED
➢ FILE_SUPPORTS_OBJECT_IDS
➢ FILE_SUPPORTS_ENCRYPTION
➢ FILE_NAMED_STREAMS
➢ FILE_READ_ONLY_VOLUME



#11

Where Filesystem Capabilites are used?

• During open() call semantics is different if named 
streams are present
➢ We can't open file with DELETE access if any of the 

file's streams is open without DELETE access
➢ If file system capabilities show support for named 

streams, we are able to open specific stream

• During close() call we delete all named streams 
for the file if file system capabilities support 
named streams

• File search operations depend heavily on a case-
sensitive search capability

• File system attributes reported through TRANS2 
query file system info call



#12

Offline Operations

• File could be taken offline by a Hierarchical 
Management Software
➢ File will be on a media with slow access times
➢ File access could block until the file migrated back to 

the disk
➢ Windows Explorer shows nice black clock as part of 

file's icon if FILE_ATTRIBUTE_OFFLINE is set
➢ For each file we call is_offline() call to check its status
➢ SetFileAttributes() could force us to set file offline, 

therefore, we have set_offline() call



#13

Offline Operations

• What systems are supported?
➢ Offline operation is a feature of Hierarchical storage 

management software (HSM)
➢ HSM usually coordinates its activity with a file system 

through Data Management API (DMAPI)
➢ vfs_tsm module supports generic HSM via DMAPI calls

➢ Check for presence of a DMAPI attribute
➢ Check for specific value of a specific DMAPI attribute

• What is required for implementation of offline 
operations?
➢ Asynchronous operations
➢ File system capabilities



#14

Named streams

• NTFS has notion of a file streams
➢ POSIX lacks it, we emulate them

➢ vfs_streams_xattr module saves streams as extended 
attributes

➢ vfs_streams_depot module uses a separate directory 
to store streams

● streaminfo() call is used to get information about 
file's streams
➢ Returns number of streams for given file and their 

information



#15

Asynchronous operations

• Samba 3 provides support for (sort of) 
asynchronous operations
➢ Requires Async I/O support from the operating system
➢ Very fragile as underlying Async I/O is broken on many 

GNU/Linux distributions
➢ Supports a number of outstanding calls:

➢ Controlled with 'max mux' smb.conf parameter (default 50)
➢ Actual logic for read/write calls is described in the 'aio read 

size'/'aio write size' smb.conf parameters

➢ aio_force() operation is used by offline operations to 
redirect deferred read/write to an offline file



#16

File system identification

• file_id_create() operation
➢ Abstracts out mount point uniqueness 
➢ Needed to represent uniformly a distributed file system 

's mount points on multiple cluster nodes
➢ file_id structure is used as a key to share modes and 

locking databases
➢ Are we locking the same file on multiple nodes?

➢ vfs_fileid module implements number of algorithms:
➢ fsname – hash of mount point (e.g. /gpfs or /gfs)
➢ fsid – hash of statfs.fsid value



Questions?
Alexander Bokovoy

ab@samba.org
Samba Team

mailto:ab@samba.org

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17

