
O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

New Features in
Samba 3.2

Jeremy Allison
jra@samba.org

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Covered in this talk

● There are many, many, new features in
Samba 3.2, added by all members of
the Team.

● I'm just going to cover the ones I
added:
– Removal of static buffers (pstrings).
– SMB level encryption.
– IPv6 conversion.
– Large SMB transport / recvfile support.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Death to pstrings !
(a refactoring bed-time

story)
● What was a pstring ?

– pstring is a data type in all versions of
Samba from initial creation to 3.0.x.

– pstring (Path String) represents a
pathname internal to the Samba code.

– Is a fixed size type, set to 1024 bytes very
early in Samba creation.

– Is very efficient (often pushed on the stack
frame of a function) and very fast.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Why must pstrings die ?

● pstrings don't fit the modern world.

– 1024 bytes is a reasonable maximum path
name limit, but people don't like limits.

– Users are starting to report errors with
paths too long.

● utf8 encodings make 1024 bytes much too
small.

– Theoretically a pathname using 6-byte utf8
encodings reduces the limit to 170
characters.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

“Blame Volker”
● Volker started the work by moving to

dynamically allocated pathnames on many of
the packet in/out code paths.

● Removing limits on pathnames looked easy,
until we examined all the other places where
pstrings interacted with the rest of the code
(utility functions etc.).

● Conclusion was the only safe way to fix this
was to eliminate pstrings entirely.

– At this point Volker handed it over to
me :-).

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

How to replace pstrings ?

● An initial test was to remove the pstring data
type definition from the include files.

– Examine the number of errors..
– Way too large to cope with in one

commit ! pstring used in 1432 places in
the code.

● Removal in stages instead.

– Many dependencies on other code had to
be examined. Many functions took a 'char
*' parameter where they were actually
assuming a pstring (1024 bytes of space).

– Fixing this took a while..

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Malloc madness
● With no static pstrings Samba

performance becomes very dependent
on malloc (Volker added a clever hack
to help with talloc).

● For vendors packaging Samba, linking
with Google's tcmalloc gains
performance (still working on the
numbers).

● For non-threaded link instances of
Samba, tridge's alloc_mmap is the
fastest malloc.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Hey – you forgot fstrings..
● Final commit message was here :

 A requiem for pstring.

 / \
 / REST \
 / IN \
 / PEACE \
 / \
 | The infamous pstring |
 | |
 | |
 | 7 December |
 | |
 | 2007 |
 *| * * * | *
 _________)/_//(\/(/\)/\//\/\///|_)_______

● Removing fstrings is left as an exercise
for the reader..

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

SMB level encryption

● SMB will sign packets, but does not do
encryption of packet data.

● With the ability of the UNIX extensions to add
new calls to SMB, Steve French and I decided
to add packet level encryption.

– Goal was not to modify any existing calls –
stay within the UNIX extension trans2
space.

– NFSv3/4 has this (kerborized NFS). We
need this to compete.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Desired semantics

● This should be at a level below the creation /
parsing of an SMB packet.

– Keep the layer separate, allow SMB signing
to continue as-is.

● Use “standards-based” encryption – GSSAPI /
SSPI framing of packets.

● Allow “secure” shares to be marked “encrypt
only” - whilst other shares are non
encrypted.

● Don't require kerberos setup for small / home
networks.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Encrypted packet framing
● Standard SMB packets start with the

signature 0xFF 'S' 'M' 'B'.

● Encrypted packets start with 0xFF 'E' <2 byte
encryption context in little endian order>

– Allows server to set up multiple separate
encryption contexts for a single client.

– Samba 3.2 server doesn't do this yet
(always uses a context of zero).

● Standard packets are passed down to the
encryption layer and gss_wrap() /
gss_unwrap() or NTLM equivalents are used
to sign and seal the packet.

– Packet length can change at this layer.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Setting up the encryption
context.

● No changes to sessionsetupX allowed.
● UNIX extensions allow trans2 changes.

– Client does a tconX to the share.
– Client detects server is capable of doing

encryption on this share via a capability bit
returned in QFSinfo. A second capability bit
specifies mandatory encryption.

– Client then calls a trans2 SetFSinfo with
SMB_REQUEST_TRANSPORT_ENCRYPTION
(0x203). Associated data is a SPNEGO
security negotiate (same as sessionsetup).

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Encryption contexts
continued

● Just like sessionsetupX, client continues
trans2 SetFSinfo calls until a successful
authentication or returns
NT_STATUS_ACCESS_DENIED.
– Final reply is unencrypted, contains as

reply params the 16-bit encryption context
to use for this tree id.

– Any subsequent client requests on this tid
must be encrypted, or the server will reject
them.

– Client can re-key at any time by doing
another SetFSinfo.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

A warning on security

● For userspace implementations (no
shared file cache) the sessionsetupX
user credentials can be re-used.
– smbclient does this.

● For kernel (CIFSFS, Apple smbfs)
implementations in a domain the
machine account must be used to
ensure proper security.
– Buffer-cache poisoning.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

A small demo..

● Please don't crash.... please don't
crash.... please don't crash.....

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

IPv6 Conversion

● Lots of internal code conversion
needed from the 3.0.x code base.

● Main change was from IPv4 specific
internal structures and API calls to
protocol independent structures and
API calls.
– Still works on IPv4 – only machines.
– Mapping library created that implements

the protocol independent calls on top of
older IPv4 calls.

– nmbd and all NetBIOS naming ignores IPv6
and binds to IPv4 only interfaces.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

IPv6 Conversion
● Please go to David Holder's talk to

understand the gory details of IPv6.
● Modern Linux distributions start out of

the box with active IPv6 interfaces.
● Samba now has interface code that will

detect and bind to IPv6 interfaces.
– smbclient can even use link-local

addresses.

● Hosts allow/deny can be Ipv6.
● Bottom line is Samba 3.2 is fully IPv6

enabled – we can bid on US federal
contracts :-).

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Large SMB frames

● NetBIOS over TCP frames are limited to
17 bits (128k).
– But 7 bits are marked as “unused”.
– So Steve Franch and I used them..

● Gives a frame size of 16 Mb.
● Samba can now easily send 16Mb

return frames in an SMBreadX reply.
– sendfile() makes this zero-copy.

● Accepting SMBwriteX calls of 16 Mb
was a little harder.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Large SMB frames
continued.

● smbd now reads the SMB header first,
then recognizes an incoming
SMBwriteX call.
– Calls down to a new VFS call, recvfile()

which on some platforms can do a zero-
copy write from the TCP stack into the
buffer cache.

– On platforms without recvfile(), smbd fakes
the call by doing 128k staging reads from
the socket into memory, then to the disk.

– Strangely enough this makes the Linux
client go fast, even without kernel support.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Large SMB frames
continued.

● Client support for this has been added
in smbclient and libsmbclient code.
– “Direct” reads and writes now remove one

of the memcpy calls from incoming /
outgoing data.

– Should make Gnome nautilus file manager
faster when doing network transfers.

● Does not work with new encrypted SMB
support, or with SMB signed
connections.
– Complete buffer must be assembled in

memory to sign the packet.

O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 W
id

e
r

W
o
r
ld

Questions and Comments ?

Email: jra@samba.org

Technical support mailing list :
samba@samba.org

Developer mailing list:
samba-technical@samba.org

mailto:jra@samba.org
mailto:samba@samba.org
mailto:samba-technical@samba.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

